Fast nonrigid 3D retrieval using modal space transform

Nonrigid or deformable 3D objects are common in many application domains. Retrieval of such objects in large databases based on shape similarity is still a challenging problem. In this paper, we first analyze the advantages of functional operators, and further propose a framework to design novel shape signatures for encoding nonrigid object structures. Our approach constructs a context-aware integral kernel operator on a manifold, then applies modal analysis to map this operator into a low-frequency functional representation, called fast functional transform, and finally computes its spectrum as the shape signature. Our method is fast, isometry-invariant, discriminative, and numerically stable with respect to multiple types of perturbations.

[1]  Thomas A. Funkhouser,et al.  The Princeton Shape Benchmark , 2004, Proceedings Shape Modeling Applications, 2004..

[2]  G. W. Stewart,et al.  A Krylov-Schur Algorithm for Large Eigenproblems , 2001, SIAM J. Matrix Anal. Appl..

[3]  Paolo Cignoni,et al.  MeshLab: an Open-Source 3D Mesh Processing System , 2008, ERCIM News.

[4]  Leonidas J. Guibas,et al.  Shape google: Geometric words and expressions for invariant shape retrieval , 2011, TOGS.

[5]  Marco Attene,et al.  ReMESH: An Interactive Environment to Edit and Repair Triangle Meshes , 2006, IEEE International Conference on Shape Modeling and Applications 2006 (SMI'06).

[6]  Maks Ovsjanikov,et al.  Functional maps , 2012, ACM Trans. Graph..

[7]  O. C. Zienkiewicz,et al.  The Finite Element Method: Its Basis and Fundamentals , 2005 .

[8]  Leonidas J. Guibas,et al.  A concise and provably informative multi-scale signature based on heat diffusion , 2009 .

[9]  Laurent D. Cohen,et al.  Heuristically Driven Front Propagation for Fast Geodesic Extraction , 2008 .

[10]  Ron Kimmel,et al.  Bending invariant representations for surfaces , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[11]  Niklas Peinecke,et al.  Laplace-Beltrami spectra as 'Shape-DNA' of surfaces and solids , 2006, Comput. Aided Des..

[12]  Raif M. Rustamov,et al.  Laplace-Beltrami eigenfunctions for deformation invariant shape representation , 2007 .

[13]  Leonidas J. Guibas,et al.  Shape Google: a computer vision approach to isometry invariant shape retrieval , 2009, 2009 IEEE 12th International Conference on Computer Vision Workshops, ICCV Workshops.

[14]  Guillermo Sapiro,et al.  A Gromov-Hausdorff Framework with Diffusion Geometry for Topologically-Robust Non-rigid Shape Matching , 2010, International Journal of Computer Vision.

[15]  Paul Suetens,et al.  Feature detection on 3D face surfaces for pose normalisation and recognition , 2010, 2010 Fourth IEEE International Conference on Biometrics: Theory, Applications and Systems (BTAS).

[16]  Paul Suetens,et al.  Isometric Deformation Modelling for Object Recognition , 2009, CAIP.

[17]  Sven J. Dickinson,et al.  Skeleton based shape matching and retrieval , 2003, 2003 Shape Modeling International..

[18]  R. Horaud,et al.  Surface feature detection and description with applications to mesh matching , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[19]  Thomas A. Funkhouser,et al.  Biharmonic distance , 2010, TOGS.

[20]  A. Alfakih On the eigenvalues of Euclidean distance matrices , 2008 .

[21]  Paul Suetens,et al.  SHREC '11 Track: Shape Retrieval on Non-rigid 3D Watertight Meshes , 2011, 3DOR@Eurographics.

[22]  Martin Reuter,et al.  Hierarchical Shape Segmentation and Registration via Topological Features of Laplace-Beltrami Eigenfunctions , 2010, International Journal of Computer Vision.

[23]  Steven J. Gortler,et al.  Fast exact and approximate geodesics on meshes , 2005, ACM Trans. Graph..

[24]  W. Arnoldi The principle of minimized iterations in the solution of the matrix eigenvalue problem , 1951 .

[25]  G LoweDavid,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004 .

[26]  J. Z. Zhu,et al.  The finite element method , 1977 .

[27]  M. Bronstein,et al.  Scale-invariance in local heat kernel descriptors without scale selection and normalization , 2009 .