Extreme Value Theory and Statistics of Univariate Extremes: A Review
暂无分享,去创建一个
[1] Paul Deheuvels,et al. Kernel Estimates of the Tail Index of a Distribution , 1985 .
[2] Janos Galambos,et al. Rates of Convergence in Extreme Value Theory , 1984 .
[3] Maria da Graça Temido,et al. Rarely Observed Sample Maxima , 2001 .
[4] Natalia M. Markovich. Nonparametric Analysis of Univariate Heavy-Tailed Data: Research and Practice , 2007 .
[5] Nader Tajvidi,et al. Extreme value statistics and wind storm losses: a case study. , 1997 .
[6] Philippe Naveau,et al. IMPROVING PROBABILITY-WEIGHTED MOMENT METHODS FOR THE GENERALIZED EXTREME VALUE DISTRIBUTION , 2008 .
[7] Luísa Canto e Castro,et al. Generalized Pickands’ estimators for the tail index parameter and max-semistability , 2011 .
[8] Holger Drees,et al. Limit theorems for empirical processes of cluster functionals , 2009, 0910.0343.
[9] L. Peng,et al. A Bootstrap-based Method to Achieve Optimality in Estimating the Extreme-value Index , 2000 .
[10] N. Markovich. Nonparametric analysis of univariate heavy-tailed data , 2007 .
[11] M. Neves,et al. Alternatives to a Semi-Parametric Estimator of Parameters of Rare Events—The Jackknife Methodology* , 2000 .
[12] U. Stadtmüller,et al. Generalized regular variation of second order , 1996, Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics.
[13] M. Ivette Gomes,et al. PORT Hill and Moment Estimators for Heavy-Tailed Models , 2008, Commun. Stat. Simul. Comput..
[14] Richard L. Smith. Approximations in Extreme Value Theory. , 1987 .
[15] Peter Hall,et al. Using the bootstrap to estimate mean squared error and select smoothing parameter in nonparametric problems , 1990 .
[16] S. Coles,et al. Likelihood-Based Inference for Extreme Value Models , 1999 .
[17] Armelle Guillou,et al. Reduced-bias estimator of the Conditional Tail Expectation of heavy-tailed distributions , 2015 .
[18] Fernanda Figueiredo,et al. Improved reduced-bias tail index and quantile estimators , 2008 .
[19] M. R. Leadbetter,et al. Extremes and Related Properties of Random Sequences and Processes: Springer Series in Statistics , 1983 .
[20] K. F. Turkman,et al. A Predictive Approach to Tail Probability Estimation , 2001 .
[21] M. Gomes,et al. AN OVERVIEW AND OPEN RESEARCH TOPICS IN STATISTICS OF UNIVARIATE EXTREMES , 2012 .
[22] A. McNeil. Estimating the Tails of Loss Severity Distributions Using Extreme Value Theory , 1997, ASTIN Bulletin.
[23] M. I. Fraga Alves. The Influence of Central Observations on Discrimination among Multivariate Extremal Models , 1993 .
[24] Deyuan Li,et al. On testing extreme value conditions , 2006 .
[25] Richard L. Smith. Maximum likelihood estimation in a class of nonregular cases , 1985 .
[26] Jan R. Magnus,et al. Records in Athletics Through Extreme-Value Theory , 2006 .
[27] Johan Segers,et al. Second-order refined peaks-over-threshold modelling for heavy-tailed distributions , 2009, 0901.1518.
[28] J. Johansson. Estimating the Mean of Heavy-Tailed Distributions , 2003 .
[29] Jonathan A. Tawn,et al. An extreme-value theory model for dependent observations , 1988 .
[30] Jan Beirlant,et al. Estimating catastrophic quantile levels for heavy-tailed distributions , 2004 .
[31] Holger Rootzén,et al. Extremes and Related Properties of Random Sequences and Processes: Springer Series in Statistics , 1983 .
[32] Michael A. Stephens,et al. Tests for the Exponential Distribution , 2017 .
[33] C. Klüppelberg,et al. Modelling Extremal Events , 1997 .
[34] M. Ivette Gomes,et al. A simple generalisation of the Hill estimator , 2013, Comput. Stat. Data Anal..
[35] Narayanaswamy Balakrishnan,et al. Order statistics from extreme value distribution, ii: best linear unbiased estimates and some other uses , 1992 .
[36] M.A.J. van Montfort,et al. An asymmetric test on the type of the distribution of extremes , 1973 .
[37] Liang Peng,et al. Empirical likelihood confidence intervals for the endpoint of a distribution function , 2011 .
[38] P. Embrechts,et al. Extremes and Robustness: A Contradiction? , 2006 .
[39] Mhamed-Ali El-Aroui,et al. Quasi-Conjugate Bayes Estimates for GPD Parameters and Application to Heavy Tails Modelling , 2005, 1103.6216.
[40] Carl Scarrott,et al. A Review of Extreme Value Threshold Estimation and Uncertainty Quantification , 2012 .
[41] Chen Zhou,et al. The extent of the maximum likelihood estimator for the extreme value index , 2010, J. Multivar. Anal..
[42] M. Ivette Gomes,et al. DIRECT REDUCTION OF BIAS OF THE CLASSI- CAL HILL ESTIMATOR ⁄ , 2005 .
[43] M. Ivette Gomes,et al. Semi-Parametric Probability-Weighted Moments Estimation Revisited , 2012, Methodology and Computing in Applied Probability.
[44] D. J. Goodman,et al. Bayesian Risk Analysis , 2000 .
[45] J. Teugels,et al. Tail Index Estimation, Pareto Quantile Plots, and Regression Diagnostics , 1996 .
[46] Allan J. Macleod. A Remark on Algorithm as 215: Maximum‐Likelihood Estimation of the Parameters of the Generalized Extreme‐Value Distribution , 1989 .
[47] Chen Zhou,et al. Existence and consistency of the maximum likelihood estimator for the extreme value index , 2009, J. Multivar. Anal..
[48] Jan Beirlant,et al. Generalized Kernel Estimators for the Weibull-Tail Coefficient , 2010 .
[49] Frederico Caeiro,et al. Semi-parametric tail inference through probability-weighted moments , 2011 .
[50] Frank Marohn,et al. Testing the Gumbel Hypothesis Via the Pot-Method , 1998 .
[51] L. Haan,et al. On the Estimation of the Extreme-Value Index and Large Quantile Estimation , 1989 .
[52] N. Christopeit,et al. Estimating parameters of an extreme value distribution by the method of moments , 1994 .
[53] A. Frigessi,et al. A Dynamic Mixture Model for Unsupervised Tail Estimation without Threshold Selection , 2002 .
[54] J. Hosking,et al. Parameter and quantile estimation for the generalized pareto distribution , 1987 .
[55] J.-P. Raoult,et al. Rate of convergence for the generalized Pareto approximation of the excesses , 2003, Advances in Applied Probability.
[56] J. Hüsler,et al. Laws of Small Numbers: Extremes and Rare Events , 1994 .
[57] M. Ivette Gomes,et al. Penultimate Behaviour of the Extremes , 1994 .
[58] Sándor Csörgő,et al. SIMPLE ESTIMATORS OF THE ENDPOINT OF A DISTRIBUTION , 1989 .
[59] J. Hüsler,et al. Statistical Analysis of Extreme Values with Applications to Insurance, Finance, Hydrology and Other Fields , 2007 .
[60] J. Tiago de Oliveira,et al. Univariate Extremes; Statistical Choice , 1984 .
[61] J. D. T. Oliveira,et al. The Asymptotic Theory of Extreme Order Statistics , 1979 .
[62] M. Ivette Gomes,et al. Statistical choice of extremal models for complete and censored data , 1985 .
[63] J. R. Wallis,et al. Probability Weighted Moments: Definition and Relation to Parameters of Several Distributions Expressable in Inverse Form , 1979 .
[64] Ishay Weissman,et al. Statistical Estimation in Extreme Value Theory , 1984 .
[65] Alan H. Welsh,et al. Adaptive Estimates of Parameters of Regular Variation , 1985 .
[66] Jan Beirlant,et al. Estimation of the extreme value index and extreme quantiles under random censoring , 2007 .
[67] A. Otten,et al. The power of two tests on the type of distributions of extremes , 1978 .
[68] J. Diebolt,et al. Approximation of the distribution of excesses through a generalized probability-weighted moments method , 2007 .
[69] J. Stedinger,et al. Generalized maximum‐likelihood generalized extreme‐value quantile estimators for hydrologic data , 2000 .
[70] Frank Marohn. An Adaptive Efficient Test for Gumbel Domain of Attraction , 1998 .
[71] Richard L. Smith,et al. A Comparison of Maximum Likelihood and Bayesian Estimators for the Three‐Parameter Weibull Distribution , 1987 .
[72] J. Diebolt,et al. Bias-reduced estimators of the Weibull tail-coefficient , 2008, 1103.6172.
[73] P. Hall,et al. Estimating a tail exponent by modelling departure from a Pareto distribution , 1999 .
[74] S. Girard. A Hill Type Estimator of the Weibull Tail-Coefficient , 2004 .
[75] Laurens de Haan,et al. Third order extended regular variation , 2006 .
[76] M. Ivette Gomes. Concomitants in a Multidimensional Extreme Model , 1984 .
[77] M. Ivette Gomes,et al. A new class of semi-parametric estimators of the second order parameter. , 2003 .
[78] Johan Segers,et al. Testing the Gumbel hypothesis by Galton's ratio , 2000 .
[79] Alex Luiz Ferreira,et al. Optimal asymptotic estimation of small exceedance probabilities , 2002 .
[80] Richard L. Smith. Estimating tails of probability distributions , 1987 .
[81] Liang Peng,et al. Bias reduction for high quantiles , 2010 .
[82] Isabel Fraga Alves,et al. ESTIMATION OF THE FINITE RIGHT ENDPOINT IN THE GUMBEL DOMAIN , 2013, 1306.1452.
[83] M. Ivette Gomes,et al. Subsampling techniques and the Jackknife methodology in the estimation of the extremal index , 2008, Comput. Stat. Data Anal..
[84] J. Beirlant,et al. A goodness-of-fit statistic for Pareto-type behaviour , 2006 .
[85] James O. Berger,et al. Bayesian and Frequentist Approaches to Parametric Predictive Inference , 1999 .
[86] M. I. Gomes. Generalized Gumbel and likelihood ratio test statistics in the multivariate GEV model , 1989 .
[87] C. Neves,et al. PORT-ESTIMATION OF A SHAPE SECOND-ORDER PARAMETER , 2014 .
[88] C. Anderson. Contributions to the asymptotic theory of extreme values , 1971 .
[89] M. C. Jones,et al. Robust and efficient estimation by minimising a density power divergence , 1998 .
[90] J. Beirlant,et al. Pareto Index Estimation Under Moderate Right Censoring , 2001 .
[91] Fernanda Figueiredo,et al. Bias reduction in risk modelling: Semi-parametric quantile estimation , 2006 .
[92] Debbie J. Dupuis,et al. A Comparison of confidence intervals for generalized extreme-value distributions , 1998 .
[93] L. Haan,et al. On the block maxima method in extreme value theory: PWM estimators , 2013, 1310.3222.
[94] M. Ivette Gomes,et al. Approximation by Penultimate Extreme Value Distributions , 1998 .
[95] A. M. Hasofer,et al. A Test for Extreme Value Domain of Attraction , 1992 .
[96] M. Ivette Gomes,et al. Statistical choice of extreme value domains of attraction — a comparative analysis , 1996 .
[97] Sander Smeets,et al. Ultimate 100‐m world records through extreme‐value theory , 2009 .
[98] John H. J. Einmahl,et al. Ultimate 100-m world records through extreme-value theory , 2011 .
[99] M. Ivette Gomes,et al. Reduced-Bias Location-Invariant Extreme Value Index Estimation: A Simulation Study , 2011, Commun. Stat. Simul. Comput..
[100] A. Walden,et al. Maximum likelihood estimation of the parameters of the generalized extreme-value distribution , 1980 .
[101] R. Rackwitz,et al. On predictive distribution functions for the three asymptotic extreme value distributions , 1992 .
[102] M. Ivette Gomes,et al. Adaptive PORT–MVRB estimation: an empirical comparison of two heuristic algorithms , 2013 .
[103] Jean-Noël Bacro,et al. A statistical test procedure for the shape parameter of a generalized Pareto distribution , 2004, Comput. Stat. Data Anal..
[104] A. Jenkinson. The frequency distribution of the annual maximum (or minimum) values of meteorological elements , 1955 .
[105] Leal De Carvalho Gomes,et al. Some probabilistic and statistical problems in extreme value theory , 1978 .
[106] M. Ivette Gomes,et al. An I-Dimensional Limiting Distribution Function of Largest Values and Its Relevance to the Statistical Theory of Extremes , 1981 .
[107] Vytaras Brazauskas,et al. Robust Estimation of Tail Parameters for Two-Parameter Pareto and Exponential Models via Generalized Quantile Statistics , 2000 .
[108] R. Fisher,et al. Limiting forms of the frequency distribution of the largest or smallest member of a sample , 1928, Mathematical Proceedings of the Cambridge Philosophical Society.
[109] L. Haan,et al. A moment estimator for the index of an extreme-value distribution , 1989 .
[110] L. Haan,et al. Extreme value theory : an introduction , 2006 .
[111] M. Ivette Gomes,et al. A Sturdy Reduced-Bias Extreme Quantile (VaR) Estimator , 2007 .
[112] Armelle Guillou,et al. An asymptotically unbiased minimum density power divergence estimator for the Pareto-tail index , 2013, J. Multivar. Anal..
[113] S. Resnick. Heavy-Tail Phenomena: Probabilistic and Statistical Modeling , 2006 .
[114] Stuart G. Coles,et al. Bayesian methods in extreme value modelling: a review and new developments. , 1996 .
[115] A. Hadi,et al. Fitting the Generalized Pareto Distribution to Data , 1997 .
[116] Jan Beirlant,et al. Excess functions and estimation of the extreme-value index , 1996 .
[117] Jonathan A. Tawn,et al. A Bayesian Analysis of Extreme Rainfall Data , 1996 .
[118] L. Haan,et al. Bias correction in extreme value statistics with index around zero , 2013 .
[119] Frederico Caeiro,et al. An Overview And Open Research Topics In Statistics Of Univariate Extremes , 2012 .
[120] Peter Hall,et al. On Estimating the Endpoint of a Distribution , 1982 .
[121] M. Fréchet. Sur la loi de probabilité de l'écart maximum , 1928 .
[122] Liang Peng,et al. Semi-parametric Estimation of the Second Order Parameter in Statistics of Extremes , 2002 .
[123] Michael A. Stephens,et al. Goodness of fit for the extreme value distribution , 1977 .
[124] M. Ivette Gomes,et al. Reduced-Bias Tail Index Estimators Under a Third-Order Framework , 2009 .
[125] G. S. Lingappaiah. Bayesian Prediction Regions for the Extreme Order Statistics , 1984 .
[126] Björn Vandewalle,et al. A heuristic adaptive choice of the threshold for bias-corrected Hill estimators , 2008 .
[127] Liang Peng,et al. Asymptotically unbiased estimators for the extreme-value index , 1998 .
[128] Robert Kinnison,et al. Correlation Coefficient Goodness-of-Fit Test for the Extreme-Value Distribution , 1989 .
[129] Michael Falk,et al. A LAN based Neyman smooth test for Pareto distributions , 2008 .
[130] M. Ivette Gomes,et al. IMPROVING SECOND ORDER REDUCED BIAS EXTREME VALUE INDEX ESTIMATION , 2007 .
[131] M. F. Brilhante. EXPONENTIALITY VERSUS GENERALIZED PARETO — A RESISTANT AND ROBUST TEST , 2004 .
[132] S. Resnick. Extreme Values, Regular Variation, and Point Processes , 1987 .
[133] M. Ivette Gomes,et al. HIGH QUANTILE ESTIMATION AND THE PORT METHODOLOGY , 2009 .
[134] D. Walshaw. Modelling extreme wind speeds in regions prone to hurricanes , 2000 .
[135] Liang Peng,et al. Does bias reduction with external estimator of second order parameter work for endpoint , 2009 .
[136] J. A. Achcar,et al. Transformation of Survival Data to an Extreme Value Distribution , 1987 .
[137] J. Hosking. Maximum‐Likelihood Estimation of the Parameters of the Generalized Extreme‐Value Distribution , 1985 .
[138] J. Teugels,et al. Practical Analysis of Extreme Values , 1996 .
[139] Richard L. Smith. Extreme value theory based on the r largest annual events , 1986 .
[140] Jan Beirlant,et al. On Exponential Representations of Log-Spacings of Extreme Order Statistics , 2002 .
[141] James Pickands,et al. Bayes Quantile Estimation and Threshold Selection for the Generalized Pareto Family , 1994 .
[142] Lei Si Ni Ke Resnick.S.I.. Extreme values. regular variation. and point processes , 2011 .
[143] Laurens de Haan,et al. Approximations to the tail empirical distribution function with application to testing extreme value conditions , 2006 .
[144] J. Doob. Stochastic processes , 1953 .
[145] Vijay P. Singh,et al. Parameter estimation for 2-parameter generalized pareto distribution by POME , 1997 .
[146] L. Canto e Castro,et al. MAX-SEMISTABLE LAWS IN EXTREMES OF STATIONARY RANDOM SEQUENCES ∗ , 2003 .
[147] M. I. Fraga Alves,et al. A Location Invariant Hill-Type Estimator , 2001 .
[148] Enrique Castillo,et al. The Selection of the Domain of Attraction of an Extreme Value Distribution from a Set of Data , 1989 .
[149] M. Ivette Gomes,et al. Mixed moment estimator and location invariant alternatives , 2009 .
[150] M. Ivette Gomes,et al. Penultimate Approximations in Statistics of Extremes and Reliability of Large Coherent Systems , 2015 .
[151] H. N. Nagaraja,et al. Order Statistics, Third Edition , 2005, Wiley Series in Probability and Statistics.
[152] Hogeschool-Universiteit Brussel,et al. GENERALIZED SUM PLOTS , 2011 .
[153] A. O'Hagan,et al. Accounting for threshold uncertainty in extreme value estimation , 2006 .
[154] E. Castillo. Extreme value and related models with applications in engineering and science , 2005 .
[155] B. Gnedenko. Sur La Distribution Limite Du Terme Maximum D'Une Serie Aleatoire , 1943 .
[156] Anthony C. Davison,et al. Modelling Excesses over High Thresholds, with an Application , 1984 .
[157] L. Peng. Estimating the mean of a heavy tailed distribution , 2001 .
[158] Laurens de Haan,et al. On maximum likelihood estimation of the extreme value index , 2004, math/0407062.
[159] Julian Z. Wang. Selection of the k Largest Order Statistics for the Domain of Attraction of the Gumbel Distribution , 1995 .
[160] Petros Dellaportas,et al. Bayesian Analysis of Extreme Values by Mixture Modeling , 2003 .
[161] J. Tiago de Oliveira,et al. Statistical Choice of Univariate Extreme Models , 1981 .
[162] M. Ivette Gomes,et al. Concomitants and linear estimators in an i-dimensional extremal model , 1985 .
[163] M. R. Leadbetter,et al. On Exceedance Point Processes for Stationary Sequences under Mild Oscillation Restrictions , 1989 .
[164] J. Corcoran. Modelling Extremal Events for Insurance and Finance , 2002 .
[165] Sidney I. Resnick,et al. How to make a Hill Plot , 2000 .
[166] Jan Beirlant,et al. Estimation of the extreme-value index and generalized quantile plots , 2005 .
[167] S. Grimshaw. Computing Maximum Likelihood Estimates for the Generalized Pareto Distribution , 1993 .
[168] M. Ivette Gomes,et al. A note on statistical choice of extremal models , 1982 .
[169] Michael Falk,et al. On testing the extreme value index via the pot-method , 1995 .
[170] M. I. Fraga Alves. A Location Invariant Hill-Type Estimator , 2001 .
[171] Edgar Kaufmann. Penultimate Approximations in Extreme Value Theory , 2000 .
[172] Rolf-Dieter Reiss,et al. A New Class of Bayesian Estimators in Paretian Excess-of-Loss Reinsurance , 1999, ASTIN Bulletin.
[173] J. Hüsler,et al. Minimum distance estimators in extreme value distributions , 1996 .
[174] Alberto Luceño,et al. Fitting the generalized Pareto distribution to data using maximum goodness-of-fit estimators , 2006, Comput. Stat. Data Anal..
[175] L. de Haan,et al. On the estimation of the exceedance probability of a high level , 1990 .
[176] Vartan Choulakian,et al. Goodness-of-Fit Tests for the Generalized Pareto Distribution , 2001, Technometrics.
[177] Jan Picek,et al. The contribution of the maximum to the sum of excesses for testing max-domains of attraction , 2006 .
[178] M. A. Amaral Turkman,et al. Bayesian approach to parameter estimation of the generalized pareto distribution , 2003 .
[179] Jan Beirlant,et al. Estimation of the Extreme Value Index , 2016 .
[180] P. Prescott,et al. Maximum likeiihood estimation of the parameters of the three-parameter generalized extreme-value distribution from censored samples , 1983 .
[181] Jonathan A. Tawn,et al. Bayesian Inference for Extremes: Accounting for the Three Extremal Types , 2004 .
[182] J. R. Wallis,et al. Estimation of the generalized extreme-value distribution by the method of probability-weighted moments , 1985 .
[183] J. Z. Wang,et al. DETERMINATION OF DOMAINS OF ATTRACTION BASED ON A SEQUENCE OF MAXIMA , 1996 .
[184] J. Hosking. Testing whether the shape parameter is zero in the generalized extreme-value distribution , 1984 .
[185] Arnoldo Frigessi,et al. Practical Extreme Value Modelling of Hydrological Floods and Droughts: A Case Study , 2004 .
[186] George Michailidis,et al. A Diagnostic Plot for Estimating the Tail Index of a Distribution , 2004 .
[187] Jana Jurečková,et al. A Class of Tests on the Tail Index , 2001 .
[188] M. Ivette Gomes,et al. Semi-parametric second-order reduced-bias high quantile estimation , 2009 .
[189] Laurens de Haan,et al. On the estimation of high quantiles , 1993 .
[190] L. Haan,et al. On optimising the estimation of high quantiles of a probability distribution , 2003 .
[191] I. Weissman. Estimation of Parameters and Large Quantiles Based on the k Largest Observations , 1978 .
[192] E. Gumbel,et al. Statistics of extremes , 1960 .
[193] Cláudia Neves. TESTING EXTREME VALUE CONDITIONS — AN OVERVIEW AND RECENT APPROACHES , 2008 .
[194] M. I. Gomes,et al. Exponentiality versus generalized Pareto, quick tests. , 1986 .
[195] Frank Marohn,et al. Testing Extreme Value Models , 2000 .
[196] J. Geluk. Π-regular variation , 1981 .
[197] Laurent Gardes,et al. Bias-reduced extreme quantile estimators of Weibull tail-distributions , 2008, 1103.6204.
[198] Jan Beirlant,et al. Tail Index Estimation and an Exponential Regression Model , 1999 .
[199] Piet Groeneboom,et al. Kernel-type estimators for the extreme value index , 2003 .
[200] Fernanda Figueiredo,et al. Adaptive estimation of heavy right tails: resampling-based methods in action , 2012 .
[201] J. R. Wallis,et al. Probability weighted moments compared with some traditional techniques in estimating Gumbel Parameters and quantiles , 1979 .
[202] Jan Beran,et al. The harmonic moment tail index estimator: asymptotic distribution and robustness , 2014 .
[203] Víctor Leiva,et al. On an extreme value version of the Birnbaum-Saunders distribution , 2012 .
[204] Richard L. Smith. Threshold Methods for Sample Extremes , 1984 .
[205] M. Crovella,et al. Estimating the Heavy Tail Index from Scaling Properties , 1999 .
[206] Jan Beirlant,et al. Peaks-Over-Threshold Modeling Under Random Censoring , 2010 .
[207] Liang Peng,et al. Robust Estimation of the Generalized Pareto Distribution , 2001 .
[208] Jan Beirlant,et al. ESTIMATING THE EXTREME VALUE INDEX AND HIGH QUANTILES WITH EXPONENTIAL REGRESSION MODELS , 2003 .
[209] S. Berman. On Regular Variation and Its Application to the Weak Convergence of Sample Extremes , 1972 .
[210] Armelle Guillou,et al. ASYMPTOTIC BEHAVIOUR OF REGULAR ESTIMATORS , 2022 .
[211] J. Teugels,et al. Statistics of Extremes , 2004 .
[212] J. V. Witter,et al. Testing exponentiality against generalised Pareto distribution , 1985 .
[213] Laurens de Haan,et al. Slow Variation and Characterization of Domains of Attraction , 1984 .
[214] M. Ivette Gomes,et al. Two Test Statistics for Choice of Univariate Extreme Models , 1984 .
[215] R. Reiss,et al. Statistical Analysis of Extreme Values-with applications to insurance , 1997 .
[216] I. V. Grinevigh. Domains of Attraction of the Max-Semistable Laws under Linear and Power Normalizations , 1994 .
[217] William R. Schucany,et al. Robust and Efficient Estimation for the Generalized Pareto Distribution , 2004 .
[218] W K Fung,et al. Method of medians for lifetime data with Weibull models. , 1999, Statistics in medicine.
[219] Armelle Guillou,et al. A diagnostic for selecting the threshold in extreme value analysis , 2001 .
[220] M. Ivette Gomes,et al. Peaks over random threshold methodology for tail index and high quantile estimation , 2006 .
[221] L. de Haan,et al. On the maximal life span of humans. , 1994, Mathematical population studies.
[222] Armelle Guillou,et al. Statistics of Extremes Under Random Censoring , 2006, 0803.2162.
[223] M. Gomes,et al. Statistics of extremes for IID data and breakthroughs in the estimation of the extreme value index: Laurens de Haan leading contributions , 2008 .
[224] Herbert A. David,et al. Order Statistics, Third Edition , 2003, Wiley Series in Probability and Statistics.
[225] B. Arnold,et al. A first course in order statistics , 1994 .
[226] S. Resnick. Heavy tail modeling and teletraffic data: special invited paper , 1997 .
[227] L. Haan,et al. Residual Life Time at Great Age , 1974 .
[228] John Lamperti,et al. On Extreme Order Statistics , 1964 .
[229] Andreas Christmann,et al. A robust estimator for the tail index of Pareto-type distributions , 2007, Comput. Stat. Data Anal..
[230] Cláudia Neves,et al. Semi-parametric approach to the Hasofer–Wang and Greenwood statistics in extremes , 2007 .
[231] Maria da Graça Temido,et al. Looking for max-semistability: A new test for the extreme value condition , 2011 .
[232] M. Ivette Gomes,et al. The Bootstrap Methodology in Statistics of Extremes—Choice of the Optimal Sample Fraction , 2001 .
[233] M.A.J. Van Montfort,et al. On testing that the distribution of extremes is of type I when type II is the alternative , 1970 .
[234] D. Farnsworth. A First Course in Order Statistics , 1993 .
[235] Michael A. Stephens,et al. Asymptotic Results for Goodness-of-Fit Statistics with Unknown Parameters , 1976 .
[236] M. Ivette Gomes,et al. Inference in a Multivariate Generalized Extreme Value Model-Asymptotic Properties of Two Test Statistics , 1986 .
[237] E. Pancheva,et al. Max-semistability: a survey , 2010 .
[238] Liang Peng,et al. Review of testing issues in extremes: in honor of Professor Laurens de Haan , 2008 .
[239] Saralees Nadarajah,et al. Location invariant Weiss-Hill estimator , 2012 .
[240] W. E. Bardsley. A test for distinguishing between extreme value distributions , 1977 .
[241] Cl'ement Dombry,et al. Maximum likelihood estimators for the extreme value index based on the block maxima method , 2013, 1301.5611.
[242] M. I. Fraga Alves. Asymptotic distribution of Gumbel statistic in a semi-parametric approach. , 1999 .
[243] J. Pickands. Statistical Inference Using Extreme Order Statistics , 1975 .
[244] Eike Christian Brechmann,et al. Bayesian Risk Analysis , 2014 .
[245] B. M. Hill,et al. A Simple General Approach to Inference About the Tail of a Distribution , 1975 .
[246] L. Haan,et al. Using a Bootstrap Method to Choose the Sample Fraction in Tail Index Estimation , 2000 .
[247] D. Dupuis. Exceedances over High Thresholds: A Guide to Threshold Selection , 1999 .
[248] E. J. Gumbel,et al. A Quick Estimation of the Parameters in Frechet's Distribution , 1965 .
[249] Richard L. Smith,et al. Models for exceedances over high thresholds , 1990 .
[250] M. Ivette Gomes,et al. Tail index estimation for heavy‐tailed models: accommodation of bias in weighted log‐excesses , 2007 .
[251] Edgar Kaufmann,et al. Selecting the optimal sample fraction in univariate extreme value estimation , 1998 .
[252] M.A.J. van Montfort,et al. On testing a shape parameter in the presence of a location and a scale parameter , 1978 .
[253] Michael Falk,et al. LAN of extreme order statistics , 1995 .
[254] Frank Marohn,et al. ON TESTING THE EXPONENTIAL AND GUMBEL DISTRIBUTION , 1994 .
[255] L. Haan. On regular variation and its application to the weak convergence of sample extremes , 1973 .
[256] K. P. Hapuarachchi,et al. Bayes estimation of the extreme-value reliability function , 1993 .
[257] M. Ivette Gomes,et al. Comparison of Extremal Models through Statistical Choice in Multidimensional Backgrounds , 1989 .