Numerical Methods for Deterministic and Stochastic Phase Field Models of Phase Transition and Related Geometric Flows

This dissertation consists of three integral parts with each part focusing on numerical approximations of several partial differential equations (PDEs). The goals of each part are to design, to analyze and to implement continuous or discontinuous Galerkin finite element methods for the underlying PDE problem. Part One studies discontinuous Galerkin (DG) approximations of two phase field models, namely, the Allen-Cahn and Cahn-Hilliard equations, and their related curvature-driven geometric problems, namely, the mean curvature flow and the HeleShaw flow. We derive two discrete spectrum estimates, which play an important role in proving the sharper error estimates which only depend on a negative power of the singular perturbation parameter [epsilon] instead of an exponential power. It is also proved that the zero level sets of the numerical solutions of the Allen-Cahn equation and the Cahn-Hilliard equation approximate the mean curvature flow and the Hele-Shaw flow respectively. Numerical experiments are carried out to verify the theoretical results and to compare the zero level sets of the numerical solutions and the geometric motions. Part Two focuses on finite element approximations of stochastic geometric PDEs including the phase field formulation of a stochastic mean curvature flow and the level set formulation of the stochastic mean curvature flow. Both formulations give PDEs with gradient-type multiplicative noises. We establish PDE energy laws and the Hölder [Holder] continuity in time for the exact solutions. Moreover, optimal error

[1]  Yi Zhang,et al.  Finite Element Methods for the Stochastic Allen-Cahn Equation with Gradient-type Multiplicative Noises , 2015, 1505.03913.

[2]  Steven M. Wise,et al.  A MIXED DISCONTINUOUS GALERKIN, CONVEX SPLITTING SCHEME FOR A MODIFIED CAHN-HILLIARD EQUATION AND AN EFFICIENT NONLINEAR MULTIGRID SOLVER , 2013 .

[3]  ADAPTIVE DISCONTINUOUS GALERKIN APPROXIMATIONS OF SECOND-ORDER ELLIPTIC PROBLEMS , 2004 .

[4]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[5]  Kenneth A. Brakke,et al.  The motion of a surface by its mean curvature , 2015 .

[6]  C. M. Elliott,et al.  Computation of geometric partial differential equations and mean curvature flow , 2005, Acta Numerica.

[7]  G. Tryggvason,et al.  A front-tracking method for viscous, incompressible, multi-fluid flows , 1992 .

[8]  R. Nicolaides,et al.  Numerical analysis of a continuum model of phase transition , 1991 .

[9]  O. Ladyženskaja Linear and Quasilinear Equations of Parabolic Type , 1968 .

[10]  Alex M. Andrew,et al.  Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science (2nd edition) , 2000 .

[11]  Xiaobing Feng,et al.  Finite element approximations of the stochastic mean curvature flow of planar curves of graphs , 2013, 1303.5930.

[12]  Robert L. Pego,et al.  Front migration in the nonlinear Cahn-Hilliard equation , 1989, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[13]  J. Cahn,et al.  A microscopic theory for antiphase boundary motion and its application to antiphase domain coasening , 1979 .

[14]  Andreas Prohl,et al.  Numerical analysis of the Allen-Cahn equation and approximation for mean curvature flows , 2003, Numerische Mathematik.

[15]  G. Huisken Flow by mean curvature of convex surfaces into spheres , 1984 .

[16]  M. Novaga,et al.  Minimal barriers for geometric evolutions , 1997 .

[17]  Yoshikazu Giga,et al.  Surface Evolution Equations: A Level Set Approach , 2006 .

[18]  Jean E. Roberts,et al.  Mixed and hybrid finite element methods , 1987 .

[19]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[20]  Xiaobing Feng,et al.  Fully Discrete Finite Element Approximations of the Navier-Stokes-Cahn-Hilliard Diffuse Interface Model for Two-Phase Fluid Flows , 2006, SIAM J. Numer. Anal..

[21]  R. Showalter Diffusion in Poro-Elastic Media , 2000 .

[22]  F. Flandoli Stochastic flows for nonlinear second-order parabolic SPDE , 1996 .

[23]  Maurizio Paolini,et al.  Quasi-optimal error estimates for the mean curvature flow with a forcing term , 1995, Differential and Integral Equations.

[24]  F. Almgren,et al.  Curvature-driven flows: a variational approach , 1993 .

[25]  Abdelhadi Es-Sarhir,et al.  Ergodicity of Stochastic Curve Shortening Flow in the Plane , 2010, SIAM J. Math. Anal..

[26]  Errico Presutti,et al.  Brownian fluctuations of the interface in the D=1 Ginzburg-Landau equation with noise , 1995 .

[27]  Sören Bartels,et al.  Robust A Priori and A Posteriori Error Analysis for the Approximation of Allen-Cahn and Ginzburg-Landau Equations Past Topological Changes , 2011, SIAM J. Numer. Anal..

[28]  J. E. Hilliard,et al.  Free Energy of a Nonuniform System. I. Interfacial Free Energy , 1958 .

[29]  Yun-Gang Chen,et al.  Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations , 1989 .

[30]  Nung Kwan Yip,et al.  Stochastic Motion by Mean Curvature , 1998 .

[31]  Todd F. Dupont SOME L2 ERROR ESTIMATES FOR PARABOLIC GALERKIN METHODS , 1972 .

[32]  O. Pironneau,et al.  Error estimates for finite element method solution of the Stokes problem in the primitive variables , 1979 .

[33]  G. McFadden Phase-Field Models of Solidification , 2002 .

[34]  Stephan Luckhaus,et al.  Solutions for the two-phase Stefan problem with the Gibbs–Thomson Law for the melting temperature , 1990, European Journal of Applied Mathematics.

[35]  Tadahisa Funaki,et al.  The scaling limit for a stochastic PDE and the separation of phases , 1995 .

[36]  Yinnian He,et al.  Analysis of finite element approximations of a phase field model for two-phase fluids , 2006, Math. Comput..

[37]  P. Souganidis,et al.  Phase Transitions and Generalized Motion by Mean Curvature , 1992 .

[38]  Stig Larsson,et al.  Finite Element Approximation of the Cahn-Hilliard-Cook Equation , 2011, SIAM J. Numer. Anal..

[39]  S. C. Brenner,et al.  A nonconforming mixed multigrid method for the pure displacement problem in planar linear elasticity , 1993 .

[40]  Hendrik Weber,et al.  Tightness for a stochastic Allen–Cahn equation , 2009, 0911.5706.

[41]  Peter W. Bates,et al.  Convergence of the Cahn-Hilliard equation to the Hele-Shaw model , 1994 .

[42]  C. M. Elliott,et al.  A nonconforming finite-element method for the two-dimensional Cahn-Hilliard equation , 1989 .

[43]  N. Krylov,et al.  Itô’s formula for the Lp-norm of stochastic $${W^{1}_{p}}$$ -valued processes , 2008, 0806.1557.

[44]  Takao Ohta,et al.  Kinetic Drumhead Model of Interface. I , 1982 .

[45]  M. Doi,et al.  Swelling dynamics of constrained thin-plate gels under an external force. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[46]  Andreas Prohl,et al.  Numerical analysis of the Cahn-Hilliard equation and approximation for the Hele-Shaw problem, Part I: Error analysis under minimum regularities , 2001 .

[47]  Omar Lakkis,et al.  Noise regularization and computations for the 1-dimensional stochastic Allen-Cahn problem , 2007, 1111.6312.

[48]  Zhangxin Chen,et al.  Pointwise Error Estimates of Discontinuous Galerkin Methods with Penalty for Second-Order Elliptic Problems , 2004, SIAM J. Numer. Anal..

[49]  L. Evans,et al.  Motion of level sets by mean curvature. II , 1992 .

[50]  Mary F. Wheeler,et al.  A coupling of mixed and continuous Galerkin finite element methods for poroelasticity II: the discrete-in-time case , 2007 .

[51]  Xiaobing Feng,et al.  Multiphysics Finite Element Methods for a Poroelasticity Model , 2014, 1411.7464.

[52]  Xinfu Chen,et al.  Spectrum for the allen-chan, chan-hillard, and phase-field equations for generic interfaces , 1994 .

[53]  Mary F. Wheeler,et al.  Overcoming the problem of locking in linear elasticity and poroelasticity: an heuristic approach , 2009 .

[54]  Andreas Prohl,et al.  Rates of Convergence for Discretizations of the Stochastic Incompressible Navier-Stokes Equations , 2012, SIAM J. Numer. Anal..

[55]  Andreas Prohl,et al.  Error analysis of a mixed finite element method for the Cahn-Hilliard equation , 2004, Numerische Mathematik.

[56]  Mary F. Wheeler,et al.  A coupling of mixed and continuous Galerkin finite element methods for poroelasticity I: the continuous in time case , 2007 .

[57]  D. J. Eyre,et al.  An Unconditionally Stable One-Step Scheme for Gradient Systems , 1997 .

[58]  Norman J. Zabusky,et al.  Regularization of contour dynamical algorithms. I. tangential regularization , 1983 .

[59]  Tom Ilmanen,et al.  Convergence of the Allen-Cahn equation to Brakke's motion by mean curvature , 1993 .

[60]  Ricardo H. Nochetto,et al.  A posteriori error control for the Allen–Cahn problem: circumventing Gronwall's inequality , 2004 .

[61]  Abimael F. D. Loula,et al.  Improved accuracy in finite element analysis of Biot's consolidation problem , 1992 .

[62]  Xinfu Chen,et al.  Global asymptotic limit of solutions of the Cahn-Hilliard equation , 1996 .

[63]  Barbara Stoth,et al.  Convergence of the Cahn-Hilliard Equation to the Mullins-Sekerka Problem in Spherical Symmetry , 1996 .

[64]  Ricardo H. Nochetto,et al.  Convergence Past Singularities for a Fully Discrete Approximation of Curvature-Drive Interfaces , 1997 .

[65]  R. LeVeque,et al.  A comparison of the extended finite element method with the immersed interface method for elliptic equations with discontinuous coefficients and singular sources , 2006 .

[66]  K. Terzaghi Theoretical Soil Mechanics , 1943 .

[67]  Z. Brzeźniak,et al.  Finite-element-based discretizations of the incompressible Navier–Stokes equations with multiplicative random forcing , 2013 .

[68]  F. Almgren,et al.  Mathematical existence of crystal growth with Gibbs-Thomson curvature effects , 2000 .

[69]  Yinnian He,et al.  Fully Discrete Finite Element Approximations of a Polymer Gel Model , 2010, SIAM J. Numer. Anal..

[70]  Lynn Schreyer-Bennethum,et al.  Theory of flow and deformation of swelling porous materials at the macroscale , 2007 .

[71]  S. Osher,et al.  Algorithms Based on Hamilton-Jacobi Formulations , 1988 .

[72]  T. Kurtz,et al.  Stochastic equations in infinite dimensions , 2006 .

[73]  Annie Millet,et al.  Rate of Convergence of Space Time Approximations for Stochastic Evolution Equations , 2007, 0706.1404.