A compact ADI method and its extrapolation for time fractional sub-diffusion equations with nonhomogeneous Neumann boundary conditions

A compact alternating direction implicit (ADI) finite difference method is proposed for two-dimensional time fractional sub-diffusion equations with nonhomogeneous Neumann boundary conditions. The unconditional stability and convergence of the method is proved. The error estimates in the weighted L 2 L 2 - and L ∞ L ∞ -norms are obtained. The proposed method has the fourth-order spatial accuracy and the temporal accuracy of order min{2−α,1+α} min { 2 − α , 1 + α } , where α∈(0,1) α ∈ ( 0 , 1 ) is the order of the fractional derivative. In order to further improve the temporal accuracy, two Richardson extrapolation algorithms are presented. Numerical results demonstrate the accuracy of the compact ADI method and the high efficiency of the extrapolation algorithms.

[1]  Tao Wang,et al.  Error analysis of a high-order compact ADI method for two-dimensional fractional convection-subdiffusion equations , 2016 .

[2]  Cui-Cui Ji,et al.  A High-Order Compact Finite Difference Scheme for the Fractional Sub-diffusion Equation , 2014, Journal of Scientific Computing.

[3]  Fawang Liu,et al.  Numerical schemes and multivariate extrapolation of a two-dimensional anomalous sub-diffusion equation , 2010, Numerical Algorithms.

[4]  Seakweng Vong,et al.  High order difference schemes for a time fractional differential equation with Neumann boundary conditions , 2013, 1311.5641.

[5]  T. Kosztołowicz,et al.  Subdiffusion in a system with a thick membrane , 2008 .

[6]  Xuan Zhao,et al.  A box-type scheme for fractional sub-diffusion equation with Neumann boundary conditions , 2011, J. Comput. Phys..

[7]  Zhi-Zhong Sun,et al.  A compact finite difference scheme for the fractional sub-diffusion equations , 2011, J. Comput. Phys..

[8]  Sunil Kumar,et al.  A fractional model to describe the Brownian motion of particles and its analytical solution , 2015 .

[9]  Devendra Kumar,et al.  Fractional modelling arising in unidirectional propagation of long waves in dispersive media , 2016 .

[10]  Denni Kurniawan,et al.  Effect of cutting speed and feed in turning hardened stainless steel using coated carbide cutting tool under minimum quantity lubrication using castor oil , 2015 .

[11]  Mehdi Dehghan,et al.  A high-order and unconditionally stable scheme for the modified anomalous fractional sub-diffusion equation with a nonlinear source term , 2013, J. Comput. Phys..

[12]  Zhi-Zhong Sun,et al.  Alternating direction implicit schemes for the two-dimensional fractional sub-diffusion equation , 2011, J. Comput. Phys..

[13]  Juan J. Nieto,et al.  Higher-Order Numerical Scheme for the Fractional Heat Equation with Dirichlet and Neumann Boundary Conditions , 2013 .

[14]  Santos B. Yuste,et al.  An Explicit Finite Difference Method and a New von Neumann-Type Stability Analysis for Fractional Diffusion Equations , 2004, SIAM J. Numer. Anal..

[15]  Xuan Zhao,et al.  A three level linearized compact difference scheme for the Cahn-Hilliard equation , 2011, Science China Mathematics.

[16]  Santos B. Yuste,et al.  On an explicit finite difference method for fractional diffusion equations , 2003, ArXiv.

[17]  Fawang Liu,et al.  Finite element approximation for a modified anomalous subdiffusion equation , 2011 .

[18]  Devendra Kumar,et al.  A modified homotopy analysis method for solution of fractional wave equations , 2015 .

[19]  Xianjuan Li,et al.  A Space-Time Spectral Method for the Time Fractional Diffusion Equation , 2009, SIAM J. Numer. Anal..

[20]  Fawang Liu,et al.  An implicit RBF meshless approach for time fractional diffusion equations , 2011 .

[21]  Nicholas Hale,et al.  An Efficient Implicit FEM Scheme for Fractional-in-Space Reaction-Diffusion Equations , 2012, SIAM J. Sci. Comput..

[22]  B. Henry,et al.  The accuracy and stability of an implicit solution method for the fractional diffusion equation , 2005 .

[23]  Dumitru Baleanu,et al.  Two analytical methods for time-fractional nonlinear coupled Boussinesq–Burger’s equations arise in propagation of shallow water waves , 2016 .

[24]  Mingrong Cui Convergence analysis of high-order compact alternating direction implicit schemes for the two-dimensional time fractional diffusion equation , 2012, Numerical Algorithms.

[25]  Zhi-Zhong Sun,et al.  Numerical Algorithm With High Spatial Accuracy for the Fractional Diffusion-Wave Equation With Neumann Boundary Conditions , 2013, J. Sci. Comput..

[26]  Zhi-Zhong Sun,et al.  A new fractional numerical differentiation formula to approximate the Caputo fractional derivative and its applications , 2014, J. Comput. Phys..

[27]  Vicente Grau,et al.  Fractional diffusion models of cardiac electrical propagation: role of structural heterogeneity in dispersion of repolarization , 2014, Journal of The Royal Society Interface.

[28]  J. Bouchaud,et al.  Anomalous diffusion in disordered media: Statistical mechanisms, models and physical applications , 1990 .

[29]  Zhi‐zhong Sun,et al.  A fully discrete difference scheme for a diffusion-wave system , 2006 .

[30]  Xuan Zhao,et al.  Compact difference scheme for the fractional sub-diffusion equation with Neumann boundary conditions , 2013, J. Comput. Phys..

[31]  Fawang Liu,et al.  Finite Difference Approximation for Two-Dimensional Time Fractional Diffusion Equation , 2007 .

[32]  Anatoly A. Alikhanov,et al.  A new difference scheme for the time fractional diffusion equation , 2014, J. Comput. Phys..