The Connectivity-Profile of Random Increasing k-trees

Random increasing k-trees represent an interesting, useful class of strongly dependent graphs for which analytic-combinatorial tools can be successfully applied. We study in this paper a notion called connectivity-profile and derive asymptotic estimates for it; some interesting consequences will also be given.

[1]  Hsien-Kuei Hwang,et al.  Profiles of Random Trees: Limit Theorems for Random Recursive Trees and Binary Search Trees , 2006, Algorithmica.

[2]  W. Richard Stevens,et al.  TCP/IP Illustrated, Volume 1: The Protocols , 1994 .

[3]  Mark E. J. Newman,et al.  The Structure and Function of Complex Networks , 2003, SIAM Rev..

[4]  Svante Janson,et al.  Long and short paths in uniform random recursive dags , 2011 .

[5]  Hsien-Kuei Hwang,et al.  Profiles of random trees: plane-oriented recursive trees (Extended Abstract) † , 2007 .

[6]  Lili Rong,et al.  High-dimensional random Apollonian networks , 2005, cond-mat/0502591.

[7]  Lowell W. Beineke,et al.  The number of labeled k-dimensional trees , 1969 .

[8]  Béla Bollobás,et al.  The degree sequence of a scale‐free random graph process , 2001, Random Struct. Algorithms.

[9]  T. F. Móri On random trees , 2002 .

[10]  Donald J. ROSE,et al.  On simple characterizations of k-trees , 1974, Discret. Math..

[11]  Philippe Flajolet,et al.  Analytic Combinatorics , 2009 .

[12]  J. Moon,et al.  On the Altitude of Nodes in Random Trees , 1978, Canadian Journal of Mathematics.

[13]  R. Read,et al.  On the Number of Plane 2‐Trees , 1973 .

[14]  Wojciech Szpankowski,et al.  Profiles of Tries , 2008, SIAM J. Comput..

[15]  K. Mehlhorn,et al.  On the Expected Depth of Random Circuits , 1999, Combinatorics, Probability and Computing.

[16]  Derek G. Corneil,et al.  Complexity of finding embeddings in a k -tree , 1987 .

[17]  R. Durrett Random Graph Dynamics: References , 2006 .

[18]  Albert,et al.  Emergence of scaling in random networks , 1999, Science.

[19]  Philippe Flajolet,et al.  Varieties of Increasing Trees , 1992, CAAP.

[20]  Gilbert Labelle,et al.  Labelled and unlabelled enumeration of k-gonal 2-trees , 2004, J. Comb. Theory, Ser. A.

[21]  J. Marckert,et al.  Some families of increasing planar maps , 2007, 0712.0593.

[22]  T. Klein,et al.  Martingales and Profile of Binary Search Trees , 2004, math/0410211.

[23]  J. S. Andrade,et al.  Apollonian networks: simultaneously scale-free, small world, euclidean, space filling, and with matching graphs. , 2004, Physical review letters.

[24]  S. Janson,et al.  A functional limit theorem for the profile of search trees. , 2006, math/0609385.

[25]  Hsien-Kuei Hwang,et al.  An asymptotic theory for Cauchy-Euler differential equations with applications to the analysis of algorithms , 2002, J. Algorithms.

[26]  Yong Gao The degree distribution of random k-trees , 2009, Theor. Comput. Sci..

[27]  Michael Drmota,et al.  On the profile of random trees , 1997, Random Struct. Algorithms.

[28]  SpencerJoel,et al.  The degree sequence of a scale-free random graph process , 2001 .

[29]  Brice Augustin,et al.  Detection, understanding, and prevention of traceroute measurement artifacts , 2008, Comput. Networks.

[30]  Alexis Darrasse,et al.  Limiting Distribution for Distances in k-Trees , 2009, IWOCA.

[31]  Hsien-Kuei Hwang,et al.  Profiles of random trees: Plane‐oriented recursive trees , 2007, Random Struct. Algorithms.