A model of present-day tectonic plate motions from 12 years of DORIS measurements

In the frame of the International DORIS Service (IDS), the Laboratoire d’Etudes en Géophysique et Océanographie Spatiales (LEGOS)/Collecte Localisation Satellites (CLS) Analysis Center (LCA) processes DORIS measurements from the SPOT, TOPEX/Poseidon and Envisat satellites and provides weekly station coordinates of the whole network to the IDS. Based on DORIS measurements, the horizontal and vertical velocities of 57 DORIS sites are computed. The 3D positions and velocities of the stations with linear motion are estimated simultaneously from the 12-year (1993–2004) combined normal equation matrix. We include 35 DORIS sites assumed to be located in the stable zones of 9 tectonic plates. For the motion of these plates, we propose a model (LCAVEL-1) of angular velocities in the ITRF2000 reference frame. Based on external comparison with the most recent global plate models (PB2002, REVEL, GSRM-1 and APKIM2000) and on internal analysis, we estimate an average velocity error of the DORIS solution of less than 3 mm/year. The LCAVEL-1 model presents new insights of the Somalia/Nubia pair of plates, as the DORIS technique has the advantage of having a few stations located on those two plates. We also computed (and provide in this article) the horizontal motion of the sites located close to plate boundaries or in the deformation zones defined in contemporary models. These computations could be used in further analysis for these particular regions of the Earth not moving as rigid plates.

[1]  Laurent Soudarin,et al.  Large‐scale tectonic plate motions measured with the DORIS Space Geodesy System , 1995 .

[2]  P. Bird An updated digital model of plate boundaries , 2003 .

[3]  C. Reigber,et al.  New space geodetic constraints on the distribution of deformation in Central Asia , 2001 .

[4]  N. K. Pavlis,et al.  The Development of the Joint NASA GSFC and the National Imagery and Mapping Agency (NIMA) Geopotential Model EGM96 , 1998 .

[5]  M. Şahin,et al.  Variance component estimation applied to satellite laser ranging , 1992 .

[6]  K. Fujita,et al.  Present-day plate interactions in Northeast Asia: North American, Eurasian, and Okhotsk plates , 1986 .

[7]  H. Drewes Global Plate Motion Parameters Derived from Actual Space Geodetic Observations , 1990 .

[8]  Markus Rothacher,et al.  The International GPS Service (IGS): An interdisciplinary service in support of Earth sciences , 1999 .

[9]  John C. Ries,et al.  Current status of the doris pilot experiment and the future international doris service , 2002 .

[10]  P. Molnar Continental tectonics in the aftermath of plate tectonics , 1988, Nature.

[11]  D. Gambis,et al.  Monitoring Earth orientation using space-geodetic techniques: state-of-the-art and prospective , 2004 .

[12]  Detlef Angermann,et al.  Space-geodetic estimation of the nazca-south america euler vector , 1999 .

[13]  C. G. Chase Plate kinematics: The Americas, East Africa, and the rest of the world , 1978 .

[14]  P. Molnar,et al.  Plate Tectonics of the Red Sea and East Africa , 1970, Nature.

[15]  Pascal Willis,et al.  Error Analysis of Weekly Station Coordinates in the DORIS Network , 2006 .

[16]  Jeffrey T. Freymueller,et al.  Global Plate Velocities from the Global Positioning System , 1997 .

[17]  Jean-Michel Lemoine,et al.  A corrective model for Jason-1 DORIS Doppler data in relation to the South Atlantic Anomaly , 2006 .

[18]  M. Watkins,et al.  The gravity recovery and climate experiment: Mission overview and early results , 2004 .

[19]  H. Drewes,et al.  The actual plate kinematic and crustal deformation model 2000 (APKIM 2000) as a geodetic reference system , 2001 .

[20]  Richard G. Gordon,et al.  Current plate motions , 1990 .

[21]  L. Soudarin,et al.  On-line Resources Supporting the Data, Products, and Information Infrastructure for the International DORIS Service , 2006 .

[22]  David E. Smith,et al.  Tectonic motion and deformation from satellite laser ranging to LAGEOS , 1990 .

[23]  J. Lemoine,et al.  GRIM5‐C1: Combination solution of the global gravity field to degree and order 120 , 2000 .

[24]  Zuheir Altamimi,et al.  ITRF2000: A new release of the International Terrestrial Reference Frame for earth science applications , 2002 .

[25]  C. Vigny,et al.  Confirmation of Arabia plate slow motion by new GPS data in Yemen , 2006 .

[26]  Richard G. Gordon,et al.  Evidence for motion between Nubia and Somalia along the Southwest Indian ridge , 1999, Nature.

[27]  J. P. Berthias,et al.  Comportement de l'oscillateur DORIS/Jason au passage de l'anomalie sud-atlantique , 2004 .

[28]  Pascal Willis,et al.  The International DORIS Service , 2005 .

[29]  C. Kreemer,et al.  A no‐net‐rotation model of present‐day surface motions , 2001 .

[30]  Kachishige Sato Tectonic plate motion and deformation inferred from very long baseline interferometry , 1993 .

[31]  C. Boucher,et al.  Positioning results with doris on SPOT2 after first year of mission , 1992 .

[32]  Jean-François Crétaux,et al.  Present‐day tectonic plate motions and crustal deformations from the DORIS space system , 1998 .

[33]  Jean-François Crétaux,et al.  Vertical crustal motions from the DORIS Space‐Geodesy System , 1999 .

[34]  Michael B. Heflin,et al.  Plate motion and crustal deformation estimated with geodetic data from the Global Positioning System , 1995 .

[35]  Boudewijn Ambrosius,et al.  Angular velocities of Nubia and Somalia from continuous GPS data: implications on present-day relative kinematics , 2004 .

[36]  Jean-François Crétaux,et al.  Sea level changes from Topex‐Poseidon altimetry and tide gauges, and vertical crustal motions from DORIS , 1999 .

[37]  Hervé Fagard,et al.  Twenty years of evolution for the DORIS permanent network: from its initial deployment to its renovation , 2006 .

[38]  S. Stein,et al.  Decelerating Nazca‐South America and Nazca‐Pacific Plate motions , 1999 .

[39]  Richard Biancale,et al.  Space tracking system improves accuracy of geodetic measurements , 1996 .

[40]  J. Lemoine,et al.  A high‐quality global gravity field model from CHAMP GPS tracking data and accelerometry (EIGEN‐1S) , 2002 .

[41]  P. Willis,et al.  Defining a DORIS core network for Jason-1 precise orbit determination based on ITRF2000: methods and realization , 2005 .

[42]  Jean-François Crétaux,et al.  Annual vertical crustal motions predicted from surface mass redistribution and observed by space geodesy , 2001 .

[43]  Jean-François Crétaux,et al.  Seasonal and interannual geocenter motion from SLR and DORIS measurements: Comparison with surface loading data , 2002 .

[44]  P. Willis,et al.  Applications géodésiques du système DORIS à l'Institut géographique national , 2005 .

[45]  Richard G. Gordon,et al.  Effect of recent revisions to the geomagnetic reversal time scale on estimates of current plate motions , 1994 .

[46]  P. Huchon,et al.  The Somalia plate and the East African Rift System: present-day kinematics , 1994 .

[47]  József Ádám,et al.  Vistas for Geodesy in the New Millennium , 2002 .

[48]  A. Filippov,et al.  Geometry and rate of faulting in the North Baikal Rift, Siberia , 2000 .

[49]  A. John Haines,et al.  An integrated global model of present‐day plate motions and plate boundary deformation , 2003 .

[50]  Timothy H. Dixon,et al.  REVEL: A model for Recent plate velocities from space geodesy , 2002 .

[51]  Pascal Willis,et al.  External validation of the GRACE GGM01C gravity field using GPS and DORIS positioning results , 2004 .

[52]  Anny Cazenave,et al.  Geocentre motion from the DORIS space system and laser data to the Lageos satellites: comparison with surface loading data , 2000 .

[53]  J. Royer,et al.  Location of the Nubia-Somalia boundary along the Southwest Indian Ridge , 2002 .