A low-rank multivariate general linear model for multi-subject fMRI data and a non-convex optimization algorithm for brain response comparison

&NA; The focus of this paper is on evaluating brain responses to different stimuli and identifying brain regions with different responses using multi‐subject, stimulus‐evoked functional magnetic resonance imaging (fMRI) data. To jointly model many brain voxels' responses to designed stimuli, we present a new low‐rank multivariate general linear model (LRMGLM) for stimulus‐evoked fMRI data. The new model not only is flexible to characterize variation in hemodynamic response functions (HRFs) across different regions and stimulus types, but also enables information “borrowing” across voxels and uses much fewer parameters than typical nonparametric models for HRFs. To estimate the proposed LRMGLM, we introduce a new penalized optimization function, which leads to temporally and spatially smooth HRF estimates. We develop an efficient optimization algorithm to minimize the optimization function and identify the voxels with different responses to stimuli. We show that the proposed method can outperform several existing voxel‐wise methods by achieving both high sensitivity and specificity. We apply the proposed method to the fMRI data collected in an emotion study, and identify anterior dACC to have different responses to a designed threat and control stimuli.

[1]  Ying Guo,et al.  Modeling Covariate Effects in Group Independent Component Analysis with Applications to Functional Magnetic Resonance Imaging , 2014, 1402.4239.

[2]  W D Hairston,et al.  Evaluating the impact of spatio-temporal smoothness constraints on the BOLD hemodynamic response function estimation: an analysis based on Tikhonov regularization , 2009, Physiological measurement.

[3]  Xiaodong Lin,et al.  Alternating linearization for structured regularization problems , 2011, J. Mach. Learn. Res..

[4]  R. Buxton,et al.  A Model for the Coupling between Cerebral Blood Flow and Oxygen Metabolism during Neural Stimulation , 1997, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[5]  Kathrin Klamroth,et al.  Biconvex sets and optimization with biconvex functions: a survey and extensions , 2007, Math. Methods Oper. Res..

[6]  S. Wood Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models , 2011 .

[7]  J. Stock,et al.  Forecasting Using Principal Components From a Large Number of Predictors , 2002 .

[8]  R. D'Arcy,et al.  White versus gray matter: fMRI hemodynamic responses show similar characteristics, but differ in peak amplitude , 2012, BMC Neuroscience.

[9]  M. Lindquist The Statistical Analysis of fMRI Data. , 2008, 0906.3662.

[10]  V. Calhoun,et al.  Functional network connectivity during rest and task conditions: A comparative study , 2013, Human brain mapping.

[11]  Richard J. Davidson,et al.  PSYCHOLOGICAL SCIENCE Research Article Lending a Hand Social Regulation of the Neural Response to Threat , 2022 .

[12]  Marina Vannucci,et al.  A spatiotemporal nonparametric Bayesian model of multi-subject fMRI data , 2016 .

[13]  M. Lindquist,et al.  Validity and power in hemodynamic response modeling: A comparison study and a new approach , 2007, Human brain mapping.

[14]  Hans Knutsson,et al.  Detection and detrending in fMRI data analysis , 2004, NeuroImage.

[15]  G. Glover Deconvolution of Impulse Response in Event-Related BOLD fMRI1 , 1999, NeuroImage.

[16]  V. D. Calhoun,et al.  fMRI analysis with the general linear model: removal of latency-induced amplitude bias by incorporation of hemodynamic derivative terms , 2004, NeuroImage.

[17]  Mark Jarmasz,et al.  Exploratory data analysis reveals visuovisual interhemispheric transfer in functional magnetic resonance imaging , 2006, Magnetic resonance in medicine.

[18]  Grace Wahba,et al.  Spline Models for Observational Data , 1990 .

[19]  S. Balqis Samdin,et al.  A Unified Estimation Framework for State-Related Changes in Effective Brain Connectivity , 2017, IEEE Transactions on Biomedical Engineering.

[20]  Sadasivan Puthusserypady,et al.  Analysis of fMRI Data With Drift: Modified General Linear Model and Bayesian Estimator , 2008, IEEE Transactions on Biomedical Engineering.

[21]  Augusto Aubry,et al.  Maximum Likelihood Estimation of a Structured Covariance Matrix With a Condition Number Constraint , 2012, IEEE Transactions on Signal Processing.

[22]  Steven D Beyea,et al.  Detecting functional magnetic resonance imaging activation in white matter: Interhemispheric transfer across the corpus callosum , 2008, BMC Neuroscience.

[23]  Mark D'Esposito,et al.  Variation of BOLD hemodynamic responses across subjects and brain regions and their effects on statistical analyses , 2004, NeuroImage.

[24]  Nicholas Ayache,et al.  Parcellation of brain images with anatomical and functional constraints for fMRI data analysis , 2002, Proceedings IEEE International Symposium on Biomedical Imaging.

[25]  R. Eubank Nonparametric Regression and Spline Smoothing , 1999 .

[26]  Karl J. Friston,et al.  Statistical parametric maps in functional imaging: A general linear approach , 1994 .

[27]  Hernando Ombao,et al.  Multi-Scale Factor Analysis of High-Dimensional Functional Connectivity in Brain Networks , 2020, IEEE Transactions on Network Science and Engineering.

[28]  A M Dale,et al.  Optimal experimental design for event‐related fMRI , 1999, Human brain mapping.

[29]  Laurent Risser,et al.  Spatially adaptive mixture modeling for analysis of fMRI time series , 2009, NeuroImage.

[30]  Karl J. Friston,et al.  Analysis of functional MRI time‐series , 1994, Human Brain Mapping.

[31]  J. Allen,et al.  The relation of attachment security to adolescents' paternal and peer relationships, depression, and externalizing behavior. , 2007, Child development.

[32]  Martin J. Wainwright,et al.  Noisy matrix decomposition via convex relaxation: Optimal rates in high dimensions , 2011, ICML.

[33]  Genevera I. Allen,et al.  Journal of the American Statistical Association a Generalized Least-square Matrix Decomposition a Generalized Least-square Matrix Decomposition , 2022 .

[34]  Brian Knutson,et al.  FMRI Visualization of Brain Activity during a Monetary Incentive Delay Task , 2000, NeuroImage.

[35]  Chee-Ming Ting,et al.  Modeling Effective Connectivity in High-Dimensional Cortical Source Signals , 2016, IEEE Journal of Selected Topics in Signal Processing.

[36]  M. Srivastava,et al.  Estimation and testing in general multivariate linear models with Kronecker product covariance structure , 2009 .

[37]  Karl J. Friston,et al.  Analysis of fMRI Time-Series Revisited , 1995, NeuroImage.

[38]  Richard G. Baraniuk,et al.  Sparse Bilinear Logistic Regression , 2014, ArXiv.

[39]  Alan C. Evans,et al.  A General Statistical Analysis for fMRI Data , 2000, NeuroImage.

[40]  R. Todd Ogden,et al.  Smoothing parameter selection for a class of semiparametric linear models , 2009 .

[41]  C M Zhang,et al.  A comparative study of one‐level and two‐level semiparametric estimation of hemodynamic response function for fMRI data , 2007, Statistics in medicine.

[42]  Marina Vannucci,et al.  A spatio-temporal nonparametric Bayesian variable selection model of fMRI data for clustering correlated time courses , 2014, NeuroImage.

[43]  Karl J. Friston,et al.  To Smooth or Not to Smooth? Bias and Efficiency in fMRI Time-Series Analysis , 2000, NeuroImage.

[44]  Stephen M. Smith,et al.  Improved Optimization for the Robust and Accurate Linear Registration and Motion Correction of Brain Images , 2002, NeuroImage.

[45]  André J. Szameitat,et al.  The functional magnetic resonance imaging (fMRI) procedure as experienced by healthy participants and stroke patients – A pilot study , 2009, BMC Medical Imaging.

[46]  Paul J. Laurienti,et al.  The impact of temporal regularization on estimates of the BOLD hemodynamic response function: A comparative analysis , 2008, NeuroImage.

[47]  Thomas M. Talavage,et al.  Simulation of human respiration in fMRI with a mechanical model , 2002, IEEE Transactions on Biomedical Engineering.

[48]  J. Coan,et al.  Childhood maternal support and social capital moderate the regulatory impact of social relationships in adulthood. , 2013, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[49]  Michael Brady,et al.  Improved Optimization for the Robust and Accurate Linear Registration and Motion Correction of Brain Images , 2002, NeuroImage.

[50]  Ying Guo,et al.  Group Independent Component Analysis of Multi-subject fMRI Data: Connections and Distinctions between Two Methods , 2008, 2008 International Conference on BioMedical Engineering and Informatics.

[51]  Erin L. Mazerolle,et al.  Does functional MRI detect activation in white matter? A review of emerging evidence, issues, and future directions , 2014, Front. Neurosci..

[52]  Chee-Ming Ting,et al.  Multi-Scale Factor Analysis of High-Dimensional Functional Connectivity in Brain Networks , 2017, IEEE Transactions on Network Science and Engineering.

[53]  James A. Coan,et al.  Adult attachment and the brain , 2010 .

[54]  Bruce Fischl,et al.  A Role for the Human Dorsal Anterior Cingulate Cortex in Fear Expression , 2007, Biological Psychiatry.

[55]  R. Turner,et al.  Event-Related fMRI: Characterizing Differential Responses , 1998, NeuroImage.

[56]  P. Reiss,et al.  Functional Principal Component Regression and Functional Partial Least Squares , 2007 .

[57]  J B Poline,et al.  Joint detection-estimation of brain activity in functional MRI: a Multichannel Deconvolution solution , 2005, IEEE Transactions on Signal Processing.

[58]  G. Robinson That BLUP is a Good Thing: The Estimation of Random Effects , 1991 .

[59]  L. K. Hansen,et al.  Plurality and Resemblance in fMRI Data Analysis , 1999, NeuroImage.

[60]  Gabriele Polonara,et al.  Topographical organization of human corpus callosum: An fMRI mapping study , 2011, Brain Research.

[61]  T. Braver,et al.  BOLD Correlates of Trial-by-Trial Reaction Time Variability in Gray and White Matter: A Multi-Study fMRI Analysis , 2009, PloS one.

[62]  A. Dale,et al.  Dorsal anterior cingulate cortex: A role in reward-based decision making , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[63]  Thomas E. Nichols,et al.  Modeling Inter‐Subject Variability in fMRI Activation Location: A Bayesian Hierarchical Spatial Model , 2009, Biometrics.

[64]  J. -B. Poline,et al.  Estimating the Delay of the fMRI Response , 2002, NeuroImage.

[65]  Karl J. Friston,et al.  A neuromodulatory role for the human amygdala in processing emotional facial expressions. , 1998, Brain : a journal of neurology.

[66]  J. Duyn,et al.  Investigation of Low Frequency Drift in fMRI Signal , 1999, NeuroImage.

[67]  R. Potthoff,et al.  A generalized multivariate analysis of variance model useful especially for growth curve problems , 1964 .

[68]  Li Tang,et al.  A Hierarchical Model for Probabilistic Independent Component Analysis of Multi‐Subject fMRI Studies , 2013, Biometrics.

[69]  Ryan C. N. D'Arcy,et al.  Functional mapping in the corpus callosum: A 4T fMRI study of white matter , 2011, NeuroImage.

[70]  M. Irwin,et al.  Dorsal Anterior Cingulate Cortex Responses to Repeated Social Evaluative Feedback in Young Women with and without a History of Depression , 2016, Front. Behav. Neurosci..

[71]  Olivier D. Faugeras,et al.  Feature Detection in fMRI Data: The Information Bottleneck Approach , 2003, MICCAI.

[72]  Shuicheng Yan,et al.  Online Robust PCA via Stochastic Optimization , 2013, NIPS.

[73]  Lotfi Chaâri,et al.  Hemodynamic-Informed Parcellation of fMRI Data in a Joint Detection Estimation Framework , 2012, MICCAI.

[74]  K. Gabriel,et al.  Generalised bilinear regression , 1998 .

[75]  Kunpeng Li,et al.  STATISTICAL ANALYSIS OF FACTOR MODELS OF HIGH DIMENSION , 2012, 1205.6617.

[76]  Jin Fan,et al.  Preparatory activity and connectivity in dorsal anterior cingulate cortex for cognitive control , 2011, NeuroImage.

[77]  J. Pekar,et al.  A method for making group inferences from functional MRI data using independent component analysis , 2001, Human brain mapping.

[78]  Bertrand Thirion,et al.  A fully Bayesian approach to the parcel-based detection-estimation of brain activity in fMRI , 2008, NeuroImage.

[79]  Fan Li,et al.  A semi-parametric model of the hemodynamic response for multi-subject fMRI data , 2013, NeuroImage.

[80]  Yehuda Koren,et al.  Matrix Factorization Techniques for Recommender Systems , 2009, Computer.

[81]  Ron Borowsky,et al.  Characterizing the functional MRI response using Tikhonov regularization , 2007, Statistics in medicine.

[82]  Andrzej Ruszczynski,et al.  Proximal Decomposition Via Alternating Linearization , 1999, SIAM J. Optim..

[83]  James A. Coan,et al.  The Social Regulation of Emotion , 2011 .

[84]  T. Adali,et al.  Unmixing fMRI with independent component analysis , 2006, IEEE Engineering in Medicine and Biology Magazine.

[85]  Jean-Baptiste Poline,et al.  Bayesian estimation of the hemodynamic response function in functional MRI , 2002 .

[86]  Xiaoshan Li,et al.  Tucker Tensor Regression and Neuroimaging Analysis , 2018, Statistics in Biosciences.

[87]  H. Benali,et al.  Robust Bayesian estimation of the hemodynamic response function in event‐related BOLD fMRI using basic physiological information , 2003, Human brain mapping.

[88]  Tingting Zhang,et al.  A semi-parametric nonlinear model for event-related fMRI , 2014, NeuroImage.

[89]  Stephen M Smith,et al.  Fast robust automated brain extraction , 2002, Human brain mapping.

[90]  Hongtu Zhu,et al.  Tensor Regression with Applications in Neuroimaging Data Analysis , 2012, Journal of the American Statistical Association.

[91]  Peter D. Hoff,et al.  MULTILINEAR TENSOR REGRESSION FOR LONGITUDINAL RELATIONAL DATA. , 2014, The annals of applied statistics.

[92]  T. Egner,et al.  Emotional processing in anterior cingulate and medial prefrontal cortex , 2011, Trends in Cognitive Sciences.

[93]  S. Kosslyn,et al.  Impact of fMRI Acoustic Noise on the Functional Anatomy of Visual Mental Imagery , 2002, Journal of Cognitive Neuroscience.

[94]  M. D’Esposito,et al.  The variability of human BOLD hemodynamic responses , 1998, NeuroImage.

[95]  Karl J. Friston,et al.  Analysis of fMRI Time-Series Revisited—Again , 1995, NeuroImage.

[96]  C. F. Beckmann,et al.  Tensorial extensions of independent component analysis for multisubject FMRI analysis , 2005, NeuroImage.

[97]  Martin A. Lindquist,et al.  A hierarchical model for simultaneous detection and estimation in multi-subject fMRI studies , 2014, NeuroImage.

[98]  Steffen Rendle,et al.  Factorization Machines with libFM , 2012, TIST.

[99]  Lars Kai Hansen,et al.  Modeling the hemodynamic response in fMRI using smooth FIR filters , 2000, IEEE Transactions on Medical Imaging.

[100]  Brian W. Haas,et al.  Aberrant neurocognitive processing of fear in young girls with Turner syndrome. , 2014, Social cognitive and affective neuroscience.

[101]  John Dunagan,et al.  BLR-D: applying bilinear logistic regression to factored diagnosis problems , 2011 .