Distributed Ranked Data Dissemination in Social Networks

The amount of content served on social networks can overwhelm users, who must sift through the data for relevant information. To facilitate users, we develop and implement dissemination of ranked data in social networks. Although top-k computation can be performed centrally at the user, the size of the event stream can constitute a significant bottleneck. Our approach distributes the top-k computation on an overlay network to reduce the number of events flowing through. Experiments performed using real Twitter and Facebook datasets with 5K and 30K query subscriptions demonstrate that social workloads exhibit properties that are advantageous for our solution.

[1]  Gerhard Weikum,et al.  KLEE: A Framework for Distributed Top-k Query Algorithms , 2005, VLDB.

[2]  Moni Naor,et al.  Optimal aggregation algorithms for middleware , 2001, PODS '01.

[3]  Hosung Park,et al.  What is Twitter, a social network or a news media? , 2010, WWW '10.

[4]  Sergei Vassilvitskii,et al.  Efficiently evaluating complex boolean expressions , 2010, SIGMOD Conference.

[5]  Tim Berners-Lee,et al.  Linked Data on the Web , 2008, LDOW.

[6]  Vinay Setty,et al.  PolderCast: Fast, Robust, and Scalable Architecture for P2P Pub/Sub , 2012 .

[7]  Tim Berners-Lee,et al.  Linked Data - The Story So Far , 2009, Int. J. Semantic Web Inf. Syst..

[8]  Hector Garcia-Molina,et al.  Index structures for selective dissemination of information under the Boolean model , 1994, TODS.

[9]  Evaggelia Pitoura,et al.  Preferential Publish/Subscribe , 2008, PersDB.

[10]  Luis Gravano,et al.  Evaluating top-k queries over Web-accessible databases , 2002, Proceedings 18th International Conference on Data Engineering.

[11]  Ben Y. Zhao,et al.  User interactions in social networks and their implications , 2009, EuroSys '09.

[12]  Evaggelia Pitoura,et al.  Preference-aware publish/subscribe delivery with diversity , 2009, DEBS '09.

[13]  Ihab F. Ilyas,et al.  A survey of top-k query processing techniques in relational database systems , 2008, CSUR.

[14]  Luis Gravano,et al.  Evaluating top-k queries over web-accessible databases , 2004, TODS.

[15]  David Eyers,et al.  Living in the present: on-the-fly information processing in scalable web architectures , 2012, CloudCP '12.

[16]  Zhe Wang,et al.  Efficient top-K query calculation in distributed networks , 2004, PODC '04.

[17]  Leonardo Neumeyer,et al.  S4: Distributed Stream Computing Platform , 2010, 2010 IEEE International Conference on Data Mining Workshops.

[18]  Hans-Arno Jacobsen,et al.  The PADRES Distributed Publish/Subscribe System , 2005, FIW.

[19]  Dennis Shasha,et al.  Filtering algorithms and implementation for very fast publish/subscribe systems , 2001, SIGMOD '01.

[20]  Hans-Arno Jacobsen,et al.  Relevance Matters: Capitalizing on Less (Top-k Matching in Publish/Subscribe) , 2012, 2012 IEEE 28th International Conference on Data Engineering.

[21]  Sergei Vassilvitskii,et al.  Indexing Boolean Expressions , 2009, Proc. VLDB Endow..

[22]  Pablo Rodriguez,et al.  The little engine(s) that could: scaling online social networks , 2010, SIGCOMM '10.

[23]  Marcos K. Aguilera,et al.  Matching events in a content-based subscription system , 1999, PODC '99.

[24]  Christopher Olston,et al.  Distributed top-k monitoring , 2003, SIGMOD '03.

[25]  Saikat Guha,et al.  Quasar: a probabilistic publish-subscribe system for social networks , 2008, IPTPS.

[26]  Helmut Veith,et al.  Efficient filtering in publish-subscribe systems using binary decision diagrams , 2001, Proceedings of the 23rd International Conference on Software Engineering. ICSE 2001.

[27]  Karl Aberer,et al.  Top-k/w publish/subscribe: finding k most relevant publications in sliding time window w , 2008, DEBS.

[28]  Hans-Arno Jacobsen,et al.  BE-tree: an index structure to efficiently match boolean expressions over high-dimensional discrete space , 2011, SIGMOD '11.

[29]  David S. Rosenblum,et al.  Design and evaluation of a wide-area event notification service , 2001, TOCS.

[30]  Fang Wu,et al.  Social Networks that Matter: Twitter Under the Microscope , 2008, First Monday.

[31]  Ashwin Machanavajjhala,et al.  Scalable ranked publish/subscribe , 2008, Proc. VLDB Endow..