A reconstruction of Archean biological diversity based on molecular fossils from the 2.78 to 2.45 billion-year-old Mount Bruce Supergroup, Hamersley Basin, Western Australia

Abstract Bitumens extracted from 2.7 to 2.5 billion-year-old (Ga) shales of the Fortescue and Hamersley Groups in the Pilbara Craton, Western Australia, contain traces of molecular fossils. Based on a combination of molecular characteristics typical of many Precambrian bitumens, their consistently and unusually high thermal maturities, and their widespread distribution throughout the Hamersley Basin, the bitumens can be characterized as ‘probably of Archean age’. Accepting this interpretation, the biomarkers open a new window on Archean biodiversity. The presence of hopanes in the Archean rocks confirms the antiquity of the domain Bacteria, and high relative concentrations of 2α-methylhopanes indicate that cyanobacteria were important primary producers. Oxygenic photosynthesis therefore evolved > 2.7 Ga ago, and well before independent evidence suggests significant levels of oxygen accumulated in the atmosphere. Moreover, the abundance of cyanobacterial biomarkers in shales interbedded with oxide-facies banded iron formations (BIF) indicates that although some Archean BIF might have been formed by abiotic photochemical processes or anoxygenic phototrophic bacteria, those in the Hamersley Group formed as a direct consequence of biological oxygen production. Biomarkers of the 3β-methylhopane series suggest that microaerophilic heterotrophic bacteria, probably methanotrophs or methylotrophs, were active in late Archean environments. The presence of steranes in a wide range of structures with relative abundances like those from late Paleoproterozoic to Phanerozoic sediments is convincing evidence for the existence of eukaryotes in the late Archean, 900 Ma before visible fossil evidence indicates that the lineage arose. Sterol biosynthesis in extant eukaryotes requires molecular oxygen. The presence of steranes together with biomarkers of oxygenic photosynthetic cyanobacteria suggests that the concentration of dissolved oxygen in some regions of the upper water column was equivalent to at least ∼1% of the present atmospheric level (PAL) and may have been sufficient to support aerobic respiration.

[1]  G. Ourisson,et al.  Delta8(14)-steroids in the bacterium Methylococcus capsulatus. , 1976, The Biochemical journal.

[2]  M. Fowler,et al.  Monocyclic alkanes in Ordovician organic matter , 1986 .

[3]  J. Rullkötter,et al.  Mono-, di- and trimethyl-branched alkanes in cultures of the filamentous cyanobacterium Calothrix scopulorum , 1999 .

[4]  D. M. Ward,et al.  Distinctive hydrocarbon biomarkers from fossiliferous sediment of the Late Proterozoic Walcott Member, Chuar Group, Grand Canyon, Arizona , 1988 .

[5]  M. Rohmer,et al.  Prokaryotic triterpenoids. 2. 2 beta-Methylhopanoids from Methylobacterium organophilum and Nostoc muscorum, a new series of prokaryotic triterpenoids. , 1985, European journal of biochemistry.

[6]  R. Summons,et al.  Hydrocarbon biomarkers from Ordovician sediments and the fossil alga Gloeocapsomorpha prisca Zalessky 1917 , 1987 .

[7]  P. Pohl,et al.  Saturated and unsaturated sterols of nitrogen-fixing blue-green algae (cyanobacteria) , 1988 .

[8]  Toshiyasu Yamaguchi,et al.  Fatty Acid Metabolism in Bacteria That Produce Eicosapentaenoic Acid Isolated from Sea Urchin Strongylocentrotus nudus. , 1995 .

[9]  S. Bengtson Early life on earth , 1994 .

[10]  R. Summons,et al.  Fossil steranes with unprecedented methylation in ring-A , 1988 .

[11]  J. Volkman A review of sterol markers for marine and terrigenous organic matter , 1986 .

[12]  R. Johns,et al.  Biological markers in the sedimentary record , 1988 .

[13]  D. D. Marais Isotopic evolution of the biogeochemical carbon cycle during the Proterozoic Eon , 1997 .

[14]  N. Butterfield,et al.  Neoproterozoic fossils from the Franklin Mountains, northwestern Canada: stratigraphic and palaeobiological implications , 2001 .

[15]  C. Boreham,et al.  Carbon isotope biogeochemistry of plant resins and derived hydrocarbons , 1998 .

[16]  A. Knoll,et al.  A bangiophyte red alga from the Proterozoic of arctic Canada. , 1990, Science.

[17]  D. Watt,et al.  Paleoenvironmental implications of novel C30 steranes in Precambrian to Cenozoic Age petroleum and bitumen , 1994 .

[18]  G. Hallegraeff,et al.  Lipids in marine diatoms of the genus Thalassiosira: Predominance of 24-methylenecholesterol , 1988 .

[19]  Stefan Schouten,et al.  Origin of free and bound mid-chain methyl alkanes in oils, bitumens and kerogens of the marine, Infracambrian Huqf Formation (Oman) , 1999 .

[20]  Winston A Hide,et al.  Eukaryotic genes in Mycobacterium tuberculosis could have a role in pathogenesis and immunomodulation. , 2002, Trends in genetics : TIG.

[21]  J. Hayes,et al.  Terminal Proterozoic mid-shelf benthic microbial mats in the Centralian Superbasin and their environmental significance. , 1999, Geochimica et cosmochimica acta.

[22]  M. Rohmer,et al.  Bacterial hopanoids from pink-pigmented facultative methylotrophs (PPFMs) and from green plant surfaces , 1994 .

[23]  C. Walters,et al.  The Biomarker Guide , 2004 .

[24]  M. Schidlowski,et al.  Early Organic Evolution: Implications for Mineral and Energy Resources , 1992 .

[25]  H. Hofmann,et al.  Carbonaceous megafossils from the Precambrian (1800 Ma) near Jixian, northern China , 1981 .

[26]  S. Brassell,et al.  Specific acyclic isoprenoids as biological markers of methanogenic bacteria in marine sediments , 1981, Nature.

[27]  P. J. Grantham The occurence of unusual C27 and C29 sterane predominances in two types of Oman crude oil , 1986 .

[28]  M. Ghannoum,et al.  Lanosterol and diacylglycerophosphocholines in lipids from whole cells and thylakoids of the cyanobacterium Chlorogloeopsis fritschii , 1987, Archives of Microbiology.

[29]  V. Thiel,et al.  Mid-chain branched alkanoic acids from “living fossil” demosponges: a link to ancient sedimentary lipids? , 1999 .

[30]  B. Nazarov,et al.  Late Devonian Radiolaria from the Gogo Formation, Canning Basin, Western Australia , 1982 .

[31]  J. Hayes Factors controlling 13C contents of sedimentary organic compounds: Principles and evidence , 1993 .

[32]  C. Pillinger,et al.  Rearranged hopanes in sediments and petroleum , 1991 .

[33]  D. Watt,et al.  Chemostratigraphic reconstruction of biofacies: Molecular evidence linking cyst-forming dinoflagellates with pre-Triassic ancestors , 1996 .

[34]  M. Walter,et al.  Stromatolites 3,400–3,500 Myr old from the North Pole area, Western Australia , 1980, Nature.

[35]  T. Kaneda Fatty acids of the genus Bacillus: an example of branched-chain preference. , 1977, Bacteriological reviews.

[36]  K. Poralla,et al.  Prokaryotic triterpenoids: new hopanoids from the nitrogen-fixing bacteria Azotobacter vinelandii, Beijerinckia indica and Beijerinckia mobilis , 1994 .

[37]  A. Steele,et al.  Questioning the evidence for Earth's oldest fossils , 2002, Nature.

[38]  S. Rowland Production of acyclic isoprenoid hydrocarbons by laboratory maturation of methanogenic bacteria , 1990 .

[39]  O. Kandler,et al.  Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[40]  Zhang Zhongying Clastic facies microfossils from the Chuanlinggou Formation (1800 Ma) near Jixian, North China , 1986, Journal of Micropalaeontology.

[41]  G. Ourisson,et al.  Distribution of Hopanoid Triterpenes in Prokaryotes , 1984 .

[42]  R Buick,et al.  Archean molecular fossils and the early rise of eukaryotes. , 1999, Science.

[43]  D. Kelly,et al.  A sterol biosynthetic pathway in Mycobacterium , 1998, FEBS letters.

[44]  N. G. M. Nadal Sterols of Spirulina maxima , 1971 .

[45]  J. Kasting,et al.  Earth's early atmosphere , 1987, Science.

[46]  W. F. Cannon,et al.  Age of volcanic rocks and syndepositional iron formations, Marquette Range Supergroup: implications for the tectonic setting of Paleoproterozoic iron formations of the Lake Superior region , 2002 .

[47]  R. Buick,et al.  Redox state of the Archean atmosphere: Evidence from detrital heavy minerals in ca. 3250–2750 Ma sandstones from the Pilbara Craton, Australia , 1999 .

[48]  J. Moldowan,et al.  Applications of steranes, terpanes and monoaromatics to the maturation, migration and source of crude oils , 1978 .

[49]  K. Grice,et al.  Isotopically heavy carbon in the C21 to C25 regular isoprenoids in halite-rich deposits from the Sdom Formation, Dead Sea Basin, Israel , 1998 .

[50]  S. Brassell,et al.  Dinoflagellate origin for sedimentary 4α-methylsteroids and 5α(H)-stanols , 1984, Nature.

[51]  Talyzina,et al.  Biogeochemical evidence for dinoflagellate ancestors in the early cambrian , 1998, Science.

[52]  H. Reichenbach,et al.  Steroids from the Myxobacterium Nannocystis exedens , 1983 .

[53]  M. Rosing,et al.  13C-Depleted carbon microparticles in >3700-Ma sea-floor sedimentary rocks from west greenland , 1999, Science.

[54]  R. Summons,et al.  Molecular fossils and microfossils of prokaryotes and protists from Proterozoic sediments , 1990 .

[55]  J. Hayes,et al.  Terminal Proterozoic reorganization of biogeochemical cycles , 1995, Nature.

[56]  D. M. Ward,et al.  Mid-chain branched mono- and dimethyl alkanes in hot spring cyanobacterial mats: A direct biogenic source for branched alkanes in ancient sediments? , 1990 .

[57]  N. Beukes,et al.  A paleoweathering profile from Griqualand West, South Africa: evidence for a dramatic rise in atmospheric oxygen between 2.2 and 1.9 bybp. , 1990, American journal of science.

[58]  A. Knoll,et al.  The early evolution of eukaryotes: a geological perspective. , 1992, Science.

[59]  B. Simoneit,et al.  Tricyclic terpanes in Precambrian bituminous sandstone from the eastern Yanshan region, North China , 1995 .

[60]  H P Klein,et al.  Oxygen requirements for formation and activity of the squalene epoxidase in Saccharomyces cerevisiae , 1983, Journal of bacteriology.

[61]  P. Albrecht,et al.  Polar Lipids of Archaebacteria in Sediments and Petroleums , 1982, Science.

[62]  Khaled R. Arouri,et al.  Tricyclic terpenoid composition of Tasmanites kerogen as determined by pyrolysis GC-MS , 2000 .

[63]  R. Summons,et al.  Hydrocarbon Composition of the Late Proterozoic Oils of the Siberian Platform: Implications for the Depositional Environment of Source Rocks , 1992 .

[64]  H. Strauss,et al.  Carbon isotope evidence for the stepwise oxidation of the Proterozoic environment , 1992, Nature.

[65]  D. Canfield,et al.  The evolution of the sulfur cycle , 1999 .

[66]  Roger E. Summons,et al.  Composition and syngeneity of molecular fossils from the 2.78 to 2.45 billion-year-old Mount Bruce Supergroup, Pilbara Craton, Western Australia , 2003 .

[67]  G. Ourisson,et al.  Unsaturated bacteriohopanepolyols from Acetobacter aceti ssp. xylinum , 1986 .

[68]  A. Knoll,et al.  Recognizing and Interpreting the Fossils of Early Eukaryotes , 2003, Origins of life and evolution of the biosphere.

[69]  J. Volkman,et al.  A new source of 4-methyl sterols and 5α(H)-stanols in sediments: prymnesiophyte microalgae of the genus Pavlova , 1990 .

[70]  J. William Schopf,et al.  The Proterozoic biosphere : a multidisciplinary study , 1992 .

[71]  David I. Groves,et al.  Stromatolite recognition in ancient rocks: an appraisal of irregularly laminated structures in an Early Archaean chert-barite unit from North Pole, Western Australia , 1981 .

[72]  K. Komagata,et al.  OCCURRENCE OF ω-CYCLOHEXYL FATTY ACIDS IN CURTOBACTERIUI PUSILLUM STRAINS , 1981 .

[73]  B. Rasmussen,et al.  Filamentous microfossils in a 3,235-million-year-old volcanogenic massive sulphide deposit , 2000, Nature.

[74]  R. Summons,et al.  Hydrocarbon shows and petroleum source rocks in sediments as old as 1.7 × 109 years , 1986, Nature.

[75]  J. W. Leeuw,et al.  Early-stage diagenesis of steroids , 1986 .

[76]  C. Snape,et al.  Release of bound aromatic hydrocarbons from late Archean and mesoproterozoic kerogens via hydropyrolysis , 2003 .

[77]  P. Haug,et al.  Isoprenoids in a Costa Rican seep oil , 1974 .

[78]  R. Seifert,et al.  Highly isotopically depleted isoprenoids: molecular markers for ancient methane venting , 1999 .

[79]  Sterols and triterpenoids from the cyanobacterium Anabaena hallensis , 1996 .

[80]  J. Hayes,et al.  An isotopic biogeochemical study of Neoproterozoic and Early Cambrian sediments from the Centralian Superbasin, Australia. , 1997, Geochimica et cosmochimica acta.

[81]  John M. Hayes,et al.  Precambrian organic geochemistry - Preservation of the record , 1983 .

[82]  J. Moldowan,et al.  Head-to-Head Linked Isoprenoid Hydrocarbons in Petroleum , 1979, Science.

[83]  E. Dufourc,et al.  Sterols from green and blue-green algae grown on reused waste water , 1994 .

[84]  A. Cairns-smith,et al.  Photo-oxidation of hydrated Fe2+—significance for banded iron formations , 1983, Nature.

[85]  C. Boreham,et al.  GEOCHEMICAL TOOLS FOR EVALUATING PETROLEUM GENERATION IN MIDDLE PROTEROZOIC SEDIMENTS OF THE McARTHUR BASIN, NORTHERN TERRITORY, AUSTRALIA , 1994 .

[86]  W. Nes,et al.  Sterols: Isolation from a Blue-Green Alga , 1968, Science.

[87]  M. Rohmer,et al.  2. 2β-Methylhopanoids from Methylobacterium organophilum and Nostoc muscorum, a new series of prokaryotic triterpenoids , 1985 .

[88]  G. Eglinton,et al.  Lipid chemistry of Icelandic hot spring microbial mats , 1990 .

[89]  S. Derenne,et al.  A reappraisal of kerogen formation , 1989 .

[90]  M. Radke Advances in organic geochemistry 1981 , 1985 .

[91]  G. Eglinton,et al.  Sterols and fatty acids of the marine diatom biddulphia sinensis , 1980 .

[92]  P. Nichols,et al.  Methyl sterol and cyclopropane fatty acid composition of Methylococcus capsulatus grown at low oxygen tensions , 1986, Journal of bacteriology.

[93]  C. Boreham,et al.  Secular and environmental constraints on the occurrence of dinosterane in sediments , 1992 .

[94]  K. Towe Earth's Early Atmosphere. , 1987, Science.

[95]  M. Rohmer,et al.  Sterols of the unicellular algae Nematochrysopsis roscoffensis and Chrysotila lamellosa: isolation of (24E)-24-n-propylidenecholesterol and 24-n-propylcholesterol , 1984 .

[96]  Roger E. Summons,et al.  2-Methylhopanoids as biomarkers for cyanobacterial oxygenic photosynthesis , 1999, Nature.

[97]  M. Fowler,et al.  Saturated hydrocarbon biomarkers in oils of Late Precambrian age from Eastern Siberia , 1987 .

[98]  A. Knoll,et al.  Three-dimensional preservation of algae and animal embryos in a Neoproterozoic phosphorite , 1998, Nature.

[99]  G. Ourisson,et al.  Prokaryotic hopanoids and other polyterpenoid sterol surrogates. , 1987, Annual review of microbiology.

[100]  Donald E. Canfield,et al.  Isotopic evidence for microbial sulphate reduction in the early Archaean era , 2001, Nature.

[101]  F. Widdel,et al.  Ferrous iron oxidation by anoxygenic phototrophic bacteria , 1993, Nature.

[102]  U. C. Klomp The chemical structure of a pronounced series of iso-alkanes in South Oman crudes , 1986 .

[103]  R. Buick The antiquity of oxygenic photosynthesis: evidence from stromatolites in sulphate-deficient Archaean lakes. , 1992, Science.

[104]  J. Hayes Geochemical evidence bearing on the origin of aerobiosis, a speculative hypothesis , 1983 .

[105]  D. D. Marais,et al.  When Did Photosynthesis Emerge on Earth? , 2000, Science.

[106]  A. Palmisano,et al.  Occurrence of novel C30 sterols in Antarctic sea-ice diatom communities during a spring bloom , 1990 .

[107]  R. Summons,et al.  Complex patterns of steroidal biomarkers in Tertiary lacustrine sediments of the Biyang Basin, China , 2001 .

[108]  Jiamo Fu,et al.  Diamondoid hydrocarbon ratios: novel maturity indices for highly mature crude oils , 1996 .

[109]  S. Horvat,et al.  Characterization of the mouse lanosterol 14alpha-demethylase (CYP51), a new member of the evolutionarily most conserved cytochrome P450 family. , 2000, Archives of biochemistry and biophysics.

[110]  C. Bauer,et al.  Molecular evidence for the early evolution of photosynthesis. , 2000, Science.

[111]  R. Summons,et al.  Sterane and triterpane biomarkers in the Precambrian Nonesuch Formation, North American Midcontinent Rift , 1991 .

[112]  H. Strauss,et al.  The Proterozoic Biosphere: Abundances and Isotopic Compositions of Carbon and Sulfur Species in Whole Rock and Kerogen Samples , 1992 .

[113]  J. Volkman,et al.  acyclic isoprenoids as biological markers , 1986 .

[114]  C. Boreham,et al.  Dinosterane and other steroidal hydrocarbons of dinoflagellate origin in sediments and petroleum , 1987 .

[115]  B. Tindall,et al.  Structure elucidation and biosynthesis of 31-methylhopanoids from Acetobacter europaeus. Studies on a new series of bacterial triterpenoids. , 1994, European journal of biochemistry.

[116]  A. Knoll,et al.  Morphological and ecological complexity in early eukaryotic ecosystems , 2001, Nature.

[117]  H. D. Hedberg Significance of High-Wax Oils with Respect to Genesis of Petroleum , 1968 .

[118]  B. Runnegar,et al.  Megascopic eukaryotic algae from the 2.1-billion-year-old negaunee iron-formation, Michigan. , 1992, Science.

[119]  H. Hofmann Precambrian microflora, Belcher Islands, Canada; significance and systematics , 1976 .

[120]  James A. Lake,et al.  Origin of the eukaryotic nucleus determined by rate-invariant analysis of rRNA sequences , 1988, Nature.

[121]  Rohmer Michel,et al.  The hopanoids, prokaryotic triterpenoids and precursors of ubiquitous molecular fossils , 1992 .

[122]  T. Cavalier-smith,et al.  The neomuran origin of archaebacteria, the negibacterial root of the universal tree and bacterial megaclassification. , 2002, International journal of systematic and evolutionary microbiology.

[123]  D. Watt,et al.  Sedimentary 12-n-Propylcholestanes, Molecular Fossils Diagnostic of Marine Algae , 1990, Science.

[124]  S. M. Barrett,et al.  Geochemical significance of the occurrence of dinosterol and other 4-methyl sterols in a marine diatom , 1993 .

[125]  J. William Schopf,et al.  Earth's earliest biosphere : its origin and evolution , 1983 .

[126]  Stefan Schouten,et al.  A newly discovered norisoprenoid, 2,6,15,19-tetramethylicosane, in Cretaceous black shales , 1998 .

[127]  Kenneth E. Peters,et al.  Effects of source, thermal maturity, and biodegradation on the distribution and isomerization of homohopanes in petroleum , 1991 .

[128]  E. Roger,et al.  Hopenes and hopanes methylated in ring-A; correlation of the hopanoids from extant methylotrophic bacteria with their fossil analogues , 1992 .

[129]  J. Lynch,et al.  Steroids and Squalene in Methylococcus capsulatus grown on Methane , 1971, Nature.

[130]  U. Jürgens,et al.  Bacterial triterpenoids of the hopane series from the prochlorophyte Prochlorothrix hollandica and their intracellular localization. , 1996, European journal of biochemistry.

[131]  Roger E. Summons,et al.  Petroleum geology and geochemistry of the Middle Proterozoic McArthur Basin, Northern Australia: III. Composition of extractable hydrocarbons , 1988 .

[132]  J. Damsté,et al.  Occurrence and origin of mono-, di-, and trimethylalkanes in modern and Holocene cyanobacterial mats from Abu Dhabi, United Arab Emirates , 1995 .

[133]  P. Albrecht,et al.  Biological markers in sediments and petroleum , 1992 .

[134]  R. Seifert,et al.  Highly isotopically depleted isoprenoids , 1999 .

[135]  M. Rohmer,et al.  Prokaryotic triterpenoids. 3. The biosynthesis of 2 beta-methylhopanoids and 3 beta-methylhopanoids of Methylobacterium organophilum and Acetobacter pasteurianus ssp. pasteurianus. , 1985, European journal of biochemistry.

[136]  R. Summons Branched alkanes from ancient and modern sediments: Isomer discrimination by GC/MS with multiple reaction monitoring , 1987 .

[137]  P. Franzmann,et al.  Carbon isotopic fractionation associated with methylotrophic methanogenesis , 1998 .