Robust PSS Parameters Design Using a Trajectory Sensitivity Approach

A new model for coordinated optimal design of power system stabilizers (PSSs) is proposed for damping low frequency power oscillation of interconnected power systems and enhancing overall performance of both transient and small-signal stability. In this model, a novel objective function is constructed using rotor speeds of generators in a post disturbed period. Trajectory sensitivity mapping technique is proposed to evaluate the approximate gradients of the objective function relative to the PSS parameters. With the gradients, conjugate gradient method is employed to assess the PSS parameters for minimizing the objective function. Two schemes of gradient formulation and optimization procedure are suggested and compared. The model and effectiveness of the method are verified by eigenvalue assessments and time domain nonlinear simulations on the IEEE four-generator and the ten-generator New England test systems.

[1]  Ali Feliachi,et al.  Stabilization of inter-area oscillation modes through excitation systems , 1994 .

[2]  Glauco N. Taranto,et al.  Simultaneous tuning of power system damping controllers using genetic algorithms , 2000 .

[3]  D.Z. Fang,et al.  A new method for fast dynamic simulation of power systems , 2006, IEEE Transactions on Power Systems.

[4]  P.J. Nolan,et al.  Coordinated Application of Stabilizers in Multimachine Power Systems , 1980, IEEE Transactions on Power Apparatus and Systems.

[5]  P. Kundur,et al.  Power system stability and control , 1994 .

[6]  M. A. Abido,et al.  Optimal power flow using particle swarm optimization , 2002 .

[7]  M. Eslami,et al.  Introduction to System Sensitivity Theory , 1980, IEEE Transactions on Systems, Man, and Cybernetics.

[8]  M. Pai,et al.  A new approach to dynamic security assessment using trajectory sensitivities , 1997, Proceedings of the 20th International Conference on Power Industry Computer Applications.

[9]  A. Fouad,et al.  Transient Stability of a Multi-Machine Power System Part I: Investigation of System Trajectories , 1981, IEEE Transactions on Power Apparatus and Systems.

[10]  M. A. Abido,et al.  Optimal multiobjective design of robust power system stabilizers using genetic algorithms , 2003 .

[11]  S. K. Tso,et al.  Refinement of conventional PSS design in multimachine system by modal analysis , 1993 .

[12]  E. Larsen,et al.  IEEE Transactions on Power Apparatus and Systems, Vol. PAS-100, No. 6 June 1981 APPLYING POWER SYSTEM STABILIZERS PART I: GENERAL CONCEPTS , 2006 .

[13]  M. A. Abido Optimal des'ign of Power System Stabilizers Using Particle Swarm Opt'imization , 2002, IEEE Power Engineering Review.

[14]  Ian A. Hiskens,et al.  Trajectory Sensitivity Analysis of Hybrid Systems , 2000 .

[15]  K. N. Shubhanga,et al.  Determination of effectiveness of transient stability controls using reduced number of trajectory sensitivity computations , 2004, IEEE Transactions on Power Systems.

[16]  Tony B. Nguyen,et al.  Dynamic security-constrained rescheduling of power systems using trajectory sensitivities , 2003 .

[17]  M. Akke,et al.  Analysis of the Nordel power grid disturbance of January 1, 1997 using trajectory sensitivities , 1999 .

[18]  D. Z. Fang,et al.  Coordinated parameter design of STATCOM stabiliser and PSS using MSSA algorithm , 2007 .

[19]  D. Chatterjee,et al.  Transient Stability Assessment of Power Systems Containing Series and Shunt Compensators , 2007, IEEE Transactions on Power Systems.

[20]  Ian A. Hiskens Systematic tuning of nonlinear power system controllers , 2002, Proceedings of the International Conference on Control Applications.

[21]  Y. H. Ku,et al.  Electric Power System Dynamics , 1983 .

[22]  Ian A. Hiskens,et al.  Damping improvement through tuning controller limits of a series FACTS device , 2005, 2005 IEEE International Symposium on Circuits and Systems.

[23]  Michael T. Heath,et al.  Scientific Computing: An Introductory Survey , 1996 .

[24]  M. A. Abido,et al.  Optimal Design of Power System Stabilizers Using Evolutionary Programming , 2002, IEEE Power Engineering Review.