Structurally and morphologically engineered chalcogenide materials for optical and photonic devices

Abstract. We discuss several recent advances in the development of methodologies and techniques used to structurally and morphologically engineer chalcogenide (ChG) materials. We introduce two ChG patterning techniques both offering spatial resolution beyond the classical single-photon diffraction limit: multiphoton lithography and thermal scanning probe lithography (TSPL). The former was applied to produce nanoscale modifications in thermally deposited As2S3, and we realized gradient refractive index (GRIN) effective medium lens fabrication in multilayer As2S3-As2Se3 films with features as small as 120 nm using this approach. The GRIN lens was shown to be optically functional. ChG Ge-Sb-Se-Te (GSST) material was also explored for its potential as a phase-change material (PCM). We demonstrated nanoscale feature patterning using TSPL in PCMs with critical dimensions below 100 nm. In addition, new patterning methods, we also report solution processing of GSST PCMs as an alternative route for ChG film deposition. These new material processing and structuring techniques will offer new pathways for creating functional planar optical and photonic devices.

[1]  Richard Soref,et al.  Broadband Electro-Optical Crossbar Switches Using Low-Loss Ge2Sb2Se4Te1 Phase Change Material , 2019, Journal of Lightwave Technology.

[2]  Martin Richardson,et al.  Refractive index patterning of infrared glass ceramics through laser-induced vitrification [Invited] , 2018, Optical Materials Express.

[3]  E. Riedo,et al.  High-throughput protein nanopatterning. , 2019, Faraday discussions.

[4]  Theresa S. Mayer,et al.  Reconfigurable near-IR metasurface based on Ge2Sb2Te5 phase-change material , 2018, Optical Materials Express.

[5]  E. Pop,et al.  GST-on-silicon hybrid nanophotonic integrated circuits: a non-volatile quasi-continuously reprogrammable platform , 2018 .

[6]  Danvers E. Johnston,et al.  Deposition of Ge23Sb7S70 chalcogenide glass films by electrospray , 2015 .

[7]  R. Shelby,et al.  Solution-phase deposition and nanopatterning of GeSbSe phase-change materials. , 2007, Nature materials.

[8]  H. Atwater,et al.  Frequency tunable near-infrared metamaterials based on VO2 phase transition. , 2009, Optics express.

[10]  R. Soref,et al.  Broadband nonvolatile photonic switching based on optical phase change materials: beyond the classical figure-of-merit. , 2018, Optics letters.

[11]  Jonathan R Felts,et al.  Nanopatterning of GeTe phase change films via heated-probe lithography. , 2017, Nanoscale.

[12]  Saadallah F. Hasan,et al.  Design of an Antireflection Coating for Mid-wave Infrared Regions in the Range ( 3000-5000 ) nm , 2013 .

[13]  I. Takeuchi,et al.  Low-Loss Integrated Photonic Switch Using Subwavelength Patterned Phase Change Material , 2019, ACS Photonics.

[14]  Federico Capasso,et al.  Active Optical Metasurfaces Based on Defect-Engineered Phase-Transition Materials. , 2016, Nano letters.

[15]  S. Elliott,et al.  Optical Nonlinearities in Chalcogenide Glasses and Their Applications , 2007 .

[16]  C. David Wright,et al.  Controlled switching of phase-change materials by evanescent-field coupling in integrated photonics [Invited] , 2018, Optical Materials Express.

[17]  Kathleen Richardson,et al.  New Candidate Multicomponent Chalcogenide Glasses for Supercontinuum Generation , 2018, Applied Sciences.

[18]  Reconfigurable all-dielectric metalens with diffraction-limited performance , 2019, 1911.12970.

[19]  C. Arnold,et al.  Sub-wavelength self-organization of chalcogenide glass by direct laser writing , 2018, Optical Materials.

[20]  Yi Xie,et al.  Study of the dissolution behavior of selenium and tellurium in different solvents: a novel route to Se, Te tubular bulk single crystals , 2002 .

[21]  Brian S. Lee,et al.  Patterning metal contacts on monolayer MoS2 with vanishing Schottky barriers using thermal nanolithography , 2019, Nature Electronics.

[22]  Harish Bhaskaran,et al.  Color Depth Modulation and Resolution in Phase‐Change Material Nanodisplays , 2016, Advanced materials.

[23]  Harish Bhaskaran,et al.  Integrated all-photonic non-volatile multi-level memory , 2015, Nature Photonics.

[25]  Chi-Sun Hwang,et al.  Holographic image generation with a thin-film resonance caused by chalcogenide phase-change material , 2017, Scientific Reports.

[26]  Behrad Gholipour,et al.  An All‐Optical, Non‐volatile, Bidirectional, Phase‐Change Meta‐Switch , 2013, Advanced materials.

[27]  Yimei Qiu,et al.  Tunable Mid‐Infrared Phase‐Change Metasurface , 2018 .

[28]  Matthias Wuttig,et al.  Atomic force microscopy study of laser induced phase transitions in Ge2Sb2Te5 , 1999 .

[29]  Vladimir Liberman,et al.  Broadband transparent optical phase change materials for high-performance nonvolatile photonics , 2018, Nature Communications.

[30]  Franco Cacialli,et al.  Thermochemical nanopatterning of organic semiconductors. , 2009, Nature nanotechnology.

[31]  Thomas Taubner,et al.  Phase-change materials for non-volatile photonic applications , 2017, Nature Photonics.

[32]  Martin Richardson,et al.  Direct femtosecond laser writing of waveguides in As2S3 thin films. , 2004, Optics letters.

[33]  J. Teng,et al.  Optically reconfigurable metasurfaces and photonic devices based on phase change materials , 2015, Nature Photonics.

[34]  N. Sharma,et al.  Recent developments on the optical properties of thin films of chalcogenide glasses , 2016 .

[35]  K. S. Sangunni,et al.  Structural transition and enhanced phase transition properties of Se doped Ge2Sb2Te5 alloys , 2015, Scientific Reports.

[36]  M. Wuttig,et al.  Enhanced temperature stability and exceptionally high electrical contrast of selenium substituted Ge2Sb2Te5 phase change materials , 2017 .

[37]  Clara Rivero-Baleine,et al.  Multi-photon lithography of 3D micro-structures in As2S3 and Ge5(As2Se3)95 chalcogenide glasses , 2016, SPIE OPTO.

[38]  Min Gu,et al.  Generation of λ/12 nanowires in chalcogenide glasses. , 2011, Nano letters.

[39]  High-aspect ratio nanopatterning via combined thermal scanning probe lithography and dry etching , 2017 .

[40]  Anupama Yadav,et al.  Monolithic Chalcogenide Optical Nanocomposites Enable Infrared System Innovation: Gradient Refractive Index Optics , 2020 .

[41]  Thomas Taubner,et al.  Reversible Optical Switching of Infrared Antenna Resonances with Ultrathin Phase-Change Layers Using Femtosecond Laser Pulses , 2014 .

[42]  J. J. Buckley,et al.  Facile dissolution of selenium and tellurium in a thiol–amine solvent mixture under ambient conditions , 2014 .

[43]  Martin Wegener,et al.  Direct Laser Writing of Three‐ Dimensional Photonic Crystals with a Complete Photonic Bandgap in Chalcogenide Glasses , 2006 .

[44]  Craig B. Arnold,et al.  Structural properties of solution processed Ge23Sb7S70 glass materials , 2012 .

[45]  S. Kuebler,et al.  Effect of refractive index mismatch on multi-photon direct laser writing. , 2012, Optics express.

[46]  Kathleen Richardson,et al.  Ultralow Dispersion Multicomponent Thin‐Film Chalcogenide Glass for Broadband Gradient‐Index Optics , 2018, Advanced materials.

[47]  C. David Wright,et al.  An optoelectronic framework enabled by low-dimensional phase-change films , 2014, Nature.

[48]  C. Schwemmer,et al.  Fast turnaround fabrication of silicon point-contact quantum-dot transistors using combined thermal scanning probe lithography and laser writing , 2018, Nanotechnology.

[49]  A. Knoll,et al.  Nanoscale Three-Dimensional Patterning of Molecular Resists by Scanning Probes , 2010, Science.

[50]  Hualiang Zhang,et al.  Electrically reconfigurable non-volatile metasurface using low-loss optical phase-change material , 2020, Nature Nanotechnology.

[51]  Theresa S. Mayer,et al.  Fabrication and characterization of microstructures created in thermally deposited arsenic trisulfide by multiphoton lithography , 2017 .

[52]  Craig B. Arnold,et al.  A review on solution processing of chalcogenide glasses for optical components , 2013 .

[53]  M. Qiu,et al.  Control over emissivity of zero-static-power thermal emitters based on phase-changing material GST , 2016, Light: Science & Applications.