Guided Semantic Flow

[1]  J. Warren,et al.  Image deformation using moving least squares , 2006, SIGGRAPH 2006.

[2]  Seungryong Kim,et al.  PARN: Pyramidal Affine Regression Networks for Dense Semantic Correspondence , 2018, ECCV.

[3]  Li Fei-Fei,et al.  ImageNet: A large-scale hierarchical image database , 2009, CVPR.

[4]  Yunsong Li,et al.  Efficient Coarse-to-Fine Patch Match for Large Displacement Optical Flow , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[5]  Yong Jae Lee,et al.  FlowWeb: Joint image set alignment by weaving consistent, pixel-wise correspondences , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[6]  Josef Sivic,et al.  End-to-End Weakly-Supervised Semantic Alignment , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[7]  Cordelia Schmid,et al.  Proposal Flow: Semantic Correspondences from Object Proposals , 2017, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[8]  Jean Ponce,et al.  Proposal Flow , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[9]  Seungryong Kim,et al.  FCSS: Fully Convolutional Self-Similarity for Dense Semantic Correspondence , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[10]  Seungryong Kim,et al.  Joint Learning of Semantic Alignment and Object Landmark Detection , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[11]  Michael J. Black,et al.  Optical Flow Estimation Using a Spatial Pyramid Network , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[12]  Jan Kautz,et al.  PWC-Net: CNNs for Optical Flow Using Pyramid, Warping, and Cost Volume , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[13]  Amine Bermak,et al.  Deep Exemplar-Based Video Colorization , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[14]  Andrew Zisserman,et al.  Spatial Transformer Networks , 2015, NIPS.

[15]  Stephen Lin,et al.  FCSS: Fully Convolutional Self-Similarity for Dense Semantic Correspondence , 2019, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[16]  Luc Van Gool,et al.  The Pascal Visual Object Classes (VOC) Challenge , 2010, International Journal of Computer Vision.

[17]  Richard Szeliski,et al.  A Taxonomy and Evaluation of Dense Two-Frame Stereo Correspondence Algorithms , 2001, International Journal of Computer Vision.

[18]  Yann LeCun,et al.  Stereo Matching by Training a Convolutional Neural Network to Compare Image Patches , 2015, J. Mach. Learn. Res..

[19]  Vincent Lepetit,et al.  Learning to Find Good Correspondences , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[20]  Adam Finkelstein,et al.  PatchMatch: a randomized correspondence algorithm for structural image editing , 2009, SIGGRAPH 2009.

[21]  Pietro Perona,et al.  One-shot learning of object categories , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[22]  Vladlen Koltun,et al.  Multi-Scale Context Aggregation by Dilated Convolutions , 2015, ICLR.

[23]  Richard Szeliski,et al.  A Database and Evaluation Methodology for Optical Flow , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[24]  Bohyung Han,et al.  Attentive Semantic Alignment with Offset-Aware Correlation Kernels , 2018, ECCV.

[25]  Xuming He,et al.  Dynamic Context Correspondence Network for Semantic Alignment , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[26]  Jean Ponce,et al.  SCNet: Learning Semantic Correspondence , 2017, ICCV.

[27]  Ce Liu,et al.  Deformable Spatial Pyramid Matching for Fast Dense Correspondences , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[28]  Stephen Lin,et al.  Recurrent Transformer Networks for Semantic Correspondence , 2018, NeurIPS.

[29]  Jitendra Malik,et al.  Poselets: Body part detectors trained using 3D human pose annotations , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[30]  Jean Ponce,et al.  Hyperpixel Flow: Semantic Correspondence With Multi-Layer Neural Features , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[31]  Alex Kendall,et al.  End-to-End Learning of Geometry and Context for Deep Stereo Regression , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[32]  Kihong Park,et al.  High-Precision Depth Estimation with the 3D LiDAR and Stereo Fusion , 2018, 2018 IEEE International Conference on Robotics and Automation (ICRA).

[33]  Trevor Darrell,et al.  Do Convnets Learn Correspondence? , 2014, NIPS.

[34]  Thomas Brox,et al.  FlowNet: Learning Optical Flow with Convolutional Networks , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[35]  Josef Sivic,et al.  Convolutional Neural Network Architecture for Geometric Matching , 2019, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[36]  Antonio Torralba,et al.  SIFT Flow: Dense Correspondence across Scenes and Its Applications , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[37]  Yong-Sheng Chen,et al.  Pyramid Stereo Matching Network , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[38]  Michael Isard,et al.  Object retrieval with large vocabularies and fast spatial matching , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[39]  Eric Brachmann,et al.  DSAC — Differentiable RANSAC for Camera Localization , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[40]  Alois Knoll,et al.  PM-Huber: PatchMatch with Huber Regularization for Stereo Matching , 2013, 2013 IEEE International Conference on Computer Vision.

[41]  Rui Hu,et al.  DeepPruner: Learning Efficient Stereo Matching via Differentiable PatchMatch , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[42]  Stefano Mattoccia,et al.  Guided Stereo Matching , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[43]  Stephen Lin,et al.  DCTM: Discrete-Continuous Transformation Matching for Semantic Flow , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[45]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[46]  Jean Ponce,et al.  SFNet: Learning Object-Aware Semantic Correspondence , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[47]  Minh N. Do,et al.  PatchMatch Filter: Edge-Aware Filtering Meets Randomized Search for Visual Correspondence , 2017, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[48]  Silvio Savarese,et al.  Beyond PASCAL: A benchmark for 3D object detection in the wild , 2014, IEEE Winter Conference on Applications of Computer Vision.

[49]  Jonathan Tompson,et al.  Discovery of Latent 3D Keypoints via End-to-end Geometric Reasoning , 2018, NeurIPS.

[50]  Tomás Pajdla,et al.  Neighbourhood Consensus Networks , 2018, NeurIPS.

[51]  Seungryong Kim,et al.  Semantic Attribute Matching Networks , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[52]  Torsten Sattler,et al.  Is This the Right Place? Geometric-Semantic Pose Verification for Indoor Visual Localization , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).