Fabrication of a High-Performance Bending Actuator Made with a PVC Gel

[1]  R. K. Jain,et al.  Thorium (IV) phosphate-polyaniline composite-based hydrophilic membranes for bending actuator application , 2017 .

[2]  A. Burgess,et al.  The ‘crystallinity’ of PVC , 1987 .

[3]  S. Bauer,et al.  Self-organized minimum-energy structures for dielectric elastomer actuators , 2006 .

[4]  Antonio Marcilla,et al.  Infrared spectral changes in PVC and plasticized PVC during gelation and fusion , 1997 .

[5]  Gursel Alici,et al.  Synthesis and performance evaluation of thin film PPy-PVDF multilayer electroactive polymer actuators , 2011 .

[6]  T. Hirai,et al.  Influence of plasticizer content on the transition of electromechanical behavior of PVC gel actuator. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[7]  M. Shahinpoor Ionic polymer–conductor composites as biomimetic sensors, robotic actuators and artificial muscles—a review , 2003 .

[8]  N. Belhaneche-Bensemra,et al.  Thermal stability and Kinetic Study of rigid and plasticized Poly(vinyl chloride)/Poly(methylmethacrylate) blends , 2015 .

[9]  Liangxu Xie,et al.  Multi-responsive, bidirectional, and large deformation bending actuators based on borax cross-linked polyvinyl alcohol derivative hydrogel , 2017 .

[10]  Irinela Chilibon,et al.  PZT and PVDF bimorph actuators , 2007 .

[11]  D. Floreano,et al.  Versatile Soft Grippers with Intrinsic Electroadhesion Based on Multifunctional Polymer Actuators , 2016, Advanced materials.

[12]  Luzhuo Chen,et al.  High-performance, low-voltage, and easy-operable bending actuator based on aligned carbon nanotube/polymer composites. , 2011, ACS nano.

[13]  S. V. D. Ven,et al.  Thermal degradation of poly(vinyl chloride): The accelerating effect of hydrogen chloride , 1969 .

[14]  Sung-Hoon Ahn,et al.  Locomotion of inchworm-inspired robot made of smart soft composite (SSC) , 2014, Bioinspiration & biomimetics.

[15]  Per G. Reinhall,et al.  Analysis of electro-active polymer bending: A component in a low cost ultrathin scanning endoscope , 2007 .

[16]  Zhi‐Xin Guo,et al.  Actuator based on MWNT/PVA hydrogels. , 2005, The journal of physical chemistry. B.

[17]  Gang Zhao,et al.  Development of biocompatible polymer actuator consisting of biopolymer chitosan, carbon nanotubes, and an ionic liquid , 2017 .

[18]  Wei Zhang,et al.  Large-Deformation Curling Actuators Based on Carbon Nanotube Composite: Advanced-Structure Design and Biomimetic Application. , 2015, ACS nano.

[19]  Sang-Youn Kim,et al.  Eco-friendly plasticized poly(vinyl chloride)–acetyl tributyl citrate gels for varifocal lens , 2015 .

[20]  Urmas Johanson,et al.  Ionic and Capacitive Artificial Muscle for Biomimetic Soft Robotics , 2015 .

[21]  Tian Chen,et al.  Graphene quantum dot–poly(vinylidene fluoride) composite for the preparation of asymmetric bilayer bending transducer , 2018, Journal of Materials Science: Materials in Electronics.

[22]  Sang-Youn Kim,et al.  Fabrication and evaluation of variable focus and large deformation plano-convex microlens based on non-ionic poly(vinyl chloride)/dibutyl adipate gels , 2015 .

[23]  Liwei Lin,et al.  High-Performance PVC Gel for Adaptive Micro-Lenses with Variable Focal Length , 2017, Scientific Reports.

[24]  M. Antonietti,et al.  A tale of two membranes: from poly (ionic liquid) to metal–organic framework hybrid nanoporous membranes via pseudomorphic replacement , 2017 .

[25]  C. Costa,et al.  Imidazolium-based ionic liquid type dependence of the bending response of polymer actuators , 2016 .

[26]  Il-Kwon Oh,et al.  Electroactive artificial muscle based on crosslinked PVA/SPTES , 2010 .

[27]  Md. Zulhash Uddin,et al.  Effects of plasticizers on novel electromechanical actuations with different poly(vinyl chloride) gels , 2003 .

[28]  Il-Kwon Oh,et al.  Novel electroactive PVA-TOCN actuator that is extremely sensitive to low electrical inputs , 2014 .