A semi-analytical approach for the analysis of variable-stiffness panels with curvilinear stiffeners

[1]  Renato Vitaliani,et al.  On the polynomial convergent formulation of a C0 isoparametric skew beam element , 1988 .

[2]  M. W. Hyer,et al.  Use of curvilinear fiber format in composite structure design , 1991 .

[3]  K. M. Liew,et al.  pb-2 Rayleigh- Ritz method for general plate analysis , 1993 .

[4]  Zafer Gürdal,et al.  Buckling response of laminates with spatially varying fiber orientations , 1993 .

[5]  Zafer Guerdal,et al.  Buckling analysis of geodesically stiffened composite panels with discrete stiffeners , 1994 .

[6]  J. Reddy Mechanics of laminated composite plates and shells : theory and analysis , 1996 .

[7]  Ever J. Barbero,et al.  A Strength of Materials Formulation for Thin Walled Composite Beams with Torsion , 1998 .

[8]  Z. Gürdal,et al.  Design of variable stiffness composite panels for maximum fundamental frequency using lamination parameters , 2007 .

[9]  Jing Li,et al.  Optimal Design of Unitized Panels with Curvilinear Stiffeners , 2005 .

[10]  Zafer Gürdal,et al.  Progressive failure analysis of tow-placed, variable-stiffness composite panels , 2007 .

[11]  Z. Gürdal,et al.  Variable stiffness composite panels : Effects of stiffness variation on the in-plane and buckling response , 2008 .

[12]  Rakesh K. Kapania,et al.  Optimal Design of Unitized Structures with Curvilinear Stiffeners using Response Surface Methodology , 2008 .

[13]  Rakesh K. Kapania,et al.  Buckling and Static Analysis of Curvilinearly Stiffened Plates Using Mesh-Free Method , 2009 .

[14]  Rakesh K. Kapania,et al.  Development of a Framework for the Design Optimization of Unitized Structures , 2009 .

[15]  Rakesh K. Kapania,et al.  Vibration of Plate with Curvilinear Stiffeners Using Mesh-Free Method , 2009 .

[16]  Zafer Gürdal,et al.  Optimization of Variable-Stiffness Panels for Maximum Buckling Load Using Lamination Parameters , 2010 .

[17]  Rakesh K. Kapania,et al.  Free Vibration Analysis of Curvilinear-Stiffened Plates and Experimental Validation , 2010 .

[18]  Eelco Jansen,et al.  POSTBUCKLING ANALYSIS OF VARIABLE STIFFNESS COMPOSITE PLATES USING A FINITE ELEMENT-BASED PERTURBATION METHOD , 2011 .

[19]  H. Akhavan,et al.  Natural modes of vibration of variable stiffness composite laminates with curvilinear fibers , 2011 .

[20]  Rakesh K. Kapania,et al.  Chebyshev-Ritz Approach to Buckling and Vibration of Curvilinearly Stiffened Plate , 2012 .

[21]  Paul M. Weaver,et al.  Buckling analysis and optimisation of variable angle tow composite plates , 2012 .

[22]  Paul M. Weaver,et al.  Comparison of Variational, Differential Quadrature, and Approximate Closed-Form Solution Methods for Buckling of Highly Flexurally Anisotropic Laminates , 2013 .

[23]  Paul M. Weaver,et al.  Postbuckling analysis of variable angle tow composite plates under shear load , 2013 .

[24]  Rakesh K. Kapania,et al.  Supersonic Wing Optimization Using SpaRibs , 2014 .

[25]  P. Ribeiro,et al.  A layerwise p-version finite element formulation for free vibration analysis of thick composite laminates with curvilinear fibres , 2015 .

[26]  Paul M. Weaver,et al.  Buckling and postbuckling of variable angle tow composite plates under in-plane shear loading , 2015 .

[27]  Paul M. Weaver,et al.  Framework for the Buckling Optimization of Variable-Angle Tow Composite Plates , 2015 .

[28]  Rakesh K. Kapania,et al.  Vibration and Buckling Analysis of Curvilinearly Stiffened Plates Using Finite Element Method , 2015 .

[29]  Alberto Milazzo,et al.  Post-buckling analysis of cracked multilayered composite plates by pb-2 Rayleigh-Ritz method , 2015 .

[30]  Rakesh K. Kapania,et al.  Buckling analysis of unitized curvilinearly stiffened composite panels , 2016 .

[31]  Lorenzo Dozio,et al.  A variable-kinematic model for variable stiffness plates: Vibration and buckling analysis , 2016 .

[32]  Paul M. Weaver,et al.  Buckling analysis, design and optimisation of variable-stiffness sandwich panels , 2016 .

[33]  Ali Y. Tamijani,et al.  Flutter Analysis of Laminated Curvilinear-Stiffened Plates , 2017 .

[34]  Rakesh K. Kapania,et al.  Vibration Analysis of Curvilinearly Stiffened Composite Panel Subjected to In-Plane Loads , 2017 .

[35]  Optimal Design of Tow-Steered Composite Laminates with Curvilinear Stiffeners , 2018 .

[36]  L. Dozio,et al.  Thermal Buckling Behaviour of Thin and Thick Variable-Stiffness Panels , 2018, Journal of Composites Science.

[37]  Alberto Milazzo,et al.  A Rayleigh-Ritz approach for postbuckling analysis of variable angle tow composite stiffened panels , 2018 .

[38]  Paul M. Weaver,et al.  Optimization of postbuckling behaviour of variable thickness composite panels with variable angle tows: Towards “Buckle-Free” design concept , 2018 .

[39]  G. Manickam,et al.  Thermal buckling behaviour of variable stiffness laminated composite plates , 2018, Materials Today Communications.

[40]  L. Dozio,et al.  On the application of the Ritz method to free vibration and buckling analysis of highly anisotropic plates , 2018 .

[41]  Paul M. Weaver,et al.  Thermo-mechanical post-buckling analysis of variable angle tow composite plate assemblies , 2018 .

[42]  R. Kapania,et al.  Prestressed Vibration of Stiffened Variable-Angle Tow Laminated Plates , 2019, AIAA Journal.

[43]  R. Kapania,et al.  Thermal Buckling Analysis and Optimization of Curvilinearly Stiffened Plates with Variable Angle Tow Laminates , 2019, Journal of Spacecraft and Rockets.