Analysis of discrete and hybrid stochastic systems by nonlinear contraction theory

We investigate the stability properties of discrete and hybrid stochastic nonlinear dynamical systems. More precisely, we extend the stochastic contraction theorems (which were formulated for continuous systems) to the case of discrete and hybrid resetting systems. In particular, we show that the mean square distance between any two trajectories of a discrete (or hybrid resetting) contracting stochastic system is upper-bounded by a constant after exponential transients. Using these results, we study the synchronization of noisy nonlinear oscillators coupled by discrete noisy interactions.

[1]  Pierre Rouchon,et al.  An intrinsic observer for a class of Lagrangian systems , 2003, IEEE Trans. Autom. Control..

[2]  G. TEMPLE,et al.  Stability and Control , 1953, Nature.

[3]  F. T. Metcalf,et al.  On Gronwall’s inequality , 1967 .

[4]  Jean-Jacques E. Slotine,et al.  Compositional Contraction Analysis of Resetting Hybrid Systems , 2006, IEEE Transactions on Automatic Control.

[5]  P. Florchinger Lyapunov-like techniques for stochastic stability , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.

[6]  Tomomichi Hagiwara,et al.  Popov-Type Criterion for Stability of Nonlinear Sampled-Data Systems , 1998, Autom..

[7]  H. Nijmeijer,et al.  Partial synchronization: from symmetry towards stability , 2002 .

[8]  Jean-Jacques E. Slotine,et al.  Nonlinear process control using contraction theory , 2000 .

[9]  Jean-Jacques E. Slotine,et al.  On partial contraction analysis for coupled nonlinear oscillators , 2004, Biological Cybernetics.

[10]  Desmond J. Higham,et al.  An Algorithmic Introduction to Numerical Simulation of Stochastic Differential Equations , 2001, SIAM Rev..

[11]  Nicolas Tabareau,et al.  Where neuroscience and dynamic system theory meet autonomous robotics: A contracting basal ganglia model for action selection , 2008, Neural Networks.

[12]  Nicolas Tabareau,et al.  A Contraction Theory Approach to Stochastic Incremental Stability , 2007, IEEE Transactions on Automatic Control.

[13]  Eugene M. Izhikevich,et al.  Weakly pulse-coupled oscillators, FM interactions, synchronization, and oscillatory associative memory , 1999, IEEE Trans. Neural Networks.

[14]  P. Florchinger Lyapunov-Like Techniques for Stochastic Stability , 1995 .

[15]  Jean-Jacques E. Slotine,et al.  On Contraction Analysis for Non-linear Systems , 1998, Autom..

[16]  Winfried Stefan Lohmiller,et al.  Contraction analysis of nonlinear systems , 1999 .

[17]  Yong Zhao,et al.  Discrete nonlinear observers for inertial navigation , 2005, Syst. Control. Lett..

[18]  Jean-Jacques E. Slotine,et al.  Control system design for mechanical systems using contraction theory , 2000, IEEE Trans. Autom. Control..

[19]  Jean-Jacques E. Slotine,et al.  Stable concurrent synchronization in dynamic system networks , 2005, Neural Networks.