Enhanced Bioelectrocatalysis Using Single-Walled Carbon Nanotubes (SWCNTs)/Polyaniline Hybrid Systems in Thin-Film and Microrod Structures Associated with Electrodes

The charge transport properties in composites consisting of pyrene sulfonic acid-functionalized single-walled carbon nanotubes embedded in polyaniline, PAn/SWCNTs, and polystyrene sulfonate-doped PAn, PAn/PSS, are compared in thin-film and microrods configurations. The PAn/SWCNTs and PAn/PSS microrods were prepared by the electropolymerization of the respective components in porous alumina membranes coated with a conductive gold support, followed by the dissolution of the membrane template. The charge transport upon the oxidation of the PAn/SWCNTs planar film or microrods structures is ca. 3.5–4.0-fold faster than upon the oxidation of the PAn/PSS planar film or microrods structures, respectively. The faster charge transport in the PAn/SWCNTs films and microrods is used to enhance the mediated bioelectrocatalyzed oxidation of glucose in the presence of glucose oxidase (GOx). The bioelectrocatalyzed oxidation of glucose in the presence of the PAn/SWCNTs in the planar film and microrods structures is ca. 2-fold and up to 6-fold (depending on the potential) enhanced as compared to the respective PAn/PSS configurations.

[1]  Itamar Willner,et al.  Enhanced Bioelectrocatalysis Using Au-Nanoparticle/Polyaniline Hybrid Systems in Thin Films and Microstructured Rods Assembled on Electrodes , 2005 .

[2]  D. Kelkar,et al.  Schottky diode using FeCl3-doped polyaniline , 2005 .

[3]  Shouzhuo Yao,et al.  Fabrication of polyaniline/carbon nanotube composite modified electrode and its electrocatalytic property to the reduction of nitrite , 2005 .

[4]  J. Oliveira,et al.  Bonelike®/PLGA hybrid materials for bone regeneration: Preparation route and physicochemical characterisation , 2005, Journal of materials science. Materials in medicine.

[5]  M. Dresselhaus,et al.  Synthesis and characterization of single-wall-carbon-nanotube-doped emeraldine salt and base polyaniline nanocomposites , 2005 .

[6]  A. M. Baró,et al.  Soluble Self‐Aligned Carbon Nanotube/Polyaniline Composites , 2005 .

[7]  Zhongfan Liu,et al.  Single-walled carbon nanotube-based coaxial nanowires: synthesis, characterization, and electrical properties. , 2005, The journal of physical chemistry. B.

[8]  Joseph Wang,et al.  Carbon nanotube--conducting-polymer composite nanowires. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[9]  Jae-Gwan Park,et al.  Hierarchical evolution of arrayed nanowires, nanorods, and nanosheets in ZnO , 2005 .

[10]  V. Varadan,et al.  Polyaniline / carbon nanotube composites: starting with phenylamino functionalized carbon nanotubes , 2005 .

[11]  G. Palleschi,et al.  Pt based enzyme electrode probes assembled with Prussian Blue and conducting polymer nanostructures. , 2004, Biosensors & bioelectronics.

[12]  M. Josowicz,et al.  Chemical and Electrochemical Synthesis of Polyaniline/Gold Composites , 2004 .

[13]  Yue Ding,et al.  Room-temperature surface-erosion route to ZnO nanorod arrays and urchin-like assemblies. , 2004, Chemistry.

[14]  Itamar Willner,et al.  Integrated nanoparticle-biomolecule hybrid systems: synthesis, properties, and applications. , 2004, Angewandte Chemie.

[15]  C. Brett,et al.  Polyaniline fibres as electrodes.: Electrochemical characterisation in acid solutions , 2004 .

[16]  S. Chang,et al.  A new and simple means for self-assembled nanostructure: Facilitated by buffer layer , 2004 .

[17]  D. Aurbach,et al.  Spatially limited diffusion coupled with ohmic potential drop and/or slow interfacial exchange: a new method to determine the diffusion time constant and external resistance from potential step (PITT) experiments , 2004 .

[18]  R. Yu,et al.  Bienzymatic amperometric biosensor for choline based on mediator thionine in situ electropolymerized within a carbon paste electrode. , 2004, Analytical biochemistry.

[19]  T. Tatsuma,et al.  Self-wiring from tyrosinase to an electrode with redox polymers , 2004 .

[20]  Rahul Singhal,et al.  Lactose biosensor based on Langmuir-Blodgett films of poly(3-hexyl thiophene). , 2004, Biosensors & bioelectronics.

[21]  Wolfgang Knoll,et al.  Polyaniline/gold nanoparticle multilayer films: Assembly, properties, and biological applications , 2004 .

[22]  A. Wiȩckowski,et al.  Network Films Composed of Conducting Polymer-Linked and Polyoxometalate-Stabilized Platinum Nanoparticles , 2004 .

[23]  Sunil P. Lonkar,et al.  Polyaniline–CdS nanocomposite from organometallic cadmium precursor , 2004 .

[24]  A. T. S. Wee,et al.  Self-assembled Growth of Coaxial Crystalline Nanowires , 2004 .

[25]  Su-Moon Park,et al.  Electrochemistry of conductive polymers. 32. Nanoscopic examination of conductivities of polyaniline films , 2004 .

[26]  L. Bulhões,et al.  Electrocatalytic properties and electrochemical stability of polyaniline and polyaniline modified with platinum nanoparticles in formaldehyde medium , 2004 .

[27]  C. R. Martin,et al.  Template synthesis of gold nanotubes in an anodic alumina membrane. , 2004, Journal of nanoscience and nanotechnology.

[28]  G. Tzamalis,et al.  Alkyl Substituent Effects on the Conductivity of Polyaniline , 2004 .

[29]  Itamar Willner,et al.  Electrochemical Assembly of a CdS Semiconductor Nanoparticle Monolayer on Surfaces: Structural Properties and Photoelectrochemical Applications , 2004 .

[30]  Itamar Willner,et al.  Long-range electrical contacting of redox enzymes by SWCNT connectors. , 2004, Angewandte Chemie.

[31]  B. Fabre,et al.  Poly(aniline boronic acid)-based conductimetric sensor of dopamine. , 2003, Chemical communications.

[32]  Serge Lefrant,et al.  Polyaniline and Carbon Nanotubes Based Composites Containing Whole Units and Fragments of Nanotubes , 2003 .

[33]  Anilesh Kumar,et al.  Microtubule sensors and sensor array based on polyaniline synthesized in the presence of poly(styrene sulfonate). , 2003, Analytical chemistry.

[34]  Dusan Losic,et al.  Protein electrochemistry using aligned carbon nanotube arrays. , 2003, Journal of the American Chemical Society.

[35]  M. Wan,et al.  Polyaniline/TiO2 Composite Nanotubes , 2003 .

[36]  I. Willner,et al.  Electrocatalytic intercalator-induced winding of double-stranded DNA with polyaniline. , 2003, Chemical communications.

[37]  I. Boyano,et al.  Potentiostatic Oxidation of Polyaniline under Conformational Relaxation Control: Experimental and Theoretical Study , 2003 .

[38]  Christine D. Keating,et al.  Striped Metal Nanowires as Building Blocks and Optical Tags , 2003 .

[39]  C. R. Martin,et al.  Template‐Fabricated Gold Nanowires and Nanotubes , 2003 .

[40]  Graciela B. Blanchet,et al.  Polyaniline nanotube composites: A high-resolution printable conductor , 2003 .

[41]  Zhixiang Wei,et al.  Polyaniline Nanotubes Doped with Sulfonated Carbon Nanotubes Made Via a Self‐Assembly Process , 2003 .

[42]  Jiri Janata,et al.  Conducting polymers in electronic chemical sensors , 2003, Nature materials.

[43]  Itamar Willner,et al.  Biomaterials for Sensors, Fuel Cells, and Circuitry , 2002, Science.

[44]  John Ballato,et al.  Carbon Nanotube Doped Polyaniline , 2002 .

[45]  Itamar Willner,et al.  Integration of polyaniline/poly(acrylic acid) films and redox enzymes on electrode supports: an in situ electrochemical/surface plasmon resonance study of the bioelectrocatalyzed oxidation of glucose or lactate in the integrated bioelectrocatalytic systems. , 2002, Journal of the American Chemical Society.

[46]  I. Willner,et al.  Solvent‐Switchable Photoelectrochemistry in the Presence of CdS‐Nanoparticle/Acrylamide Hydrogels , 2002 .

[47]  Y. S. Negi,et al.  DEVELOPMENT IN POLYANILINE CONDUCTING POLYMERS , 2002 .

[48]  Chunhui Huang,et al.  Self-Assembly and Photovoltaic Property of Covalent-Attached Multilayer Film Based on Highly Sulfonated Polyaniline and Diazoresin , 2002 .

[49]  I. Willner,et al.  Control of the Electronic Properties of Thermosensitive Poly(N‐isopropylacrylamide) and Au‐Nano‐particle/Poly(N‐isopropylacrylamide) Composite Hydrogels upon Phase Transition , 2002 .

[50]  J. Janata,et al.  Photochemical Tuning of Field‐Effect Transistor with Polyaniline Gate Conductor , 2001 .

[51]  I. Willner,et al.  Redox Activation of a Polyaniline-Coated Cantilever: An Electro-Driven Microdevice. , 2001, Angewandte Chemie.

[52]  Ling-ling Wu,et al.  Internal photoemission in polyaniline revealed by photoelectrochemistry , 2001 .

[53]  O. Chauvet,et al.  Synthesis of a new polyaniline/nanotube composite: “in-situ” polymerisation and charge transfer through site-selective interaction , 2001 .

[54]  A P Turner,et al.  Biosensors--Sense and Sensitivity , 2000, Science.

[55]  Mei Gao,et al.  Aligned Coaxial Nanowires of Carbon Nanotubes Sheathed with Conducting Polymers , 2000 .

[56]  Milo S. P. Shaffer,et al.  Carbon Nanotube and Polypyrrole Composites: Coating and Doping , 2000 .

[57]  Nikolai Gaponik,et al.  Electrochemical synthesis of CdTe nanocrystal/polypyrrole composites for optoelectronic applications , 2000 .

[58]  P. Bartlett,et al.  Poly(aniline)–poly(acrylate) composite films as modified electrodes for the oxidation of NADH , 2000 .

[59]  C. R. Martin,et al.  Using template-synthesized micro- and nanowires as building blocks for self-assembly of supramolecular architectures , 1999 .

[60]  M. Hepel The Electrocatalytic Oxidation of Methanol at Finely Dispersed Platinum Nanoparticles in Polypyrrole Films , 1998 .

[61]  Amitabha De,et al.  Conducting composites of polypyrrole and polyaniline a review , 1996 .

[62]  P. Bartlett,et al.  Electroactivity, stability and application in an enzyme switch at pH 7 of poly(aniline)–poly(styrenesulfonate) composite films , 1996 .

[63]  Matsuhiko Nishizawa,et al.  Metal Nanotubule Membranes with Electrochemically Switchable Ion-Transport Selectivity , 1995, Science.

[64]  Charles R. Martin,et al.  Nanomaterials: A Membrane-Based Synthetic Approach , 1994, Science.

[65]  Michael D. Ward,et al.  Measurement of interfacial processes at electrode surfaces with the electrochemical quartz crystal microbalance , 1992 .

[66]  Arthur J. Epstein,et al.  Effect of sulfonic acid group on polyaniline backbone , 1991 .

[67]  C. Goss,et al.  Application of (3-mercaptopropyl)trimethoxysilane as a molecular adhesive in the fabrication of vapor-deposited gold electrodes on glass substrates , 1991 .

[68]  Wu-Song Huang,et al.  Polyaniline, a novel conducting polymer. Morphology and chemistry of its oxidation and reduction in aqueous electrolytes , 1986 .

[69]  N. Oyama,et al.  IR absorption spectroscopic identification of electroactive and electroinactive polyaniline films prepared by the electrochemical polymerization of aniline , 1984 .

[70]  J. A. Logan,et al.  Electroactive polyaniline films , 1980 .