Enhanced Sensitivity of THz NbN Hot Electron Bolometer Mixers

We studied the effect of the NbN/Au contact on the sensitivities of a NbN hot electron bolometer (HEB) mixer by measuring the double sideband (DSB) receiver noise temperature (T_rec_DSB) at three local oscillator frequencies of 1.6, 2.5 and 5.3 THz. The HEB has cleaned contact structures with a thick Au layer. We demonstrated low mixer noise temperatures (T_mixer_DSB) of 240 K and 290 K at 1.6 and 2.5 THz, respectively. The latter reach roughly 3 times the quantum noise at their frequencies. The mixer is developed for the proposed OASIS and SALTUS (concept) missions. The enhanced T_mixer_DSB are more than 30 % better in comparison with published NbN HEB mixers. The improvement can reduce the integration time of a heterodyne instrument roughly by a factor of 2. The T_mixer^DSB of the same HEB has shown limited improvement at 5.3 THz, which is partly due to non-optimized antenna geometry. Besides, the results also help to understand device physics of a wide HEB (4 um) at high frequencies.

[1]  C. Kulesa,et al.  4x2 Hot electron bolometer mixer arrays for detection at 1.46, 1.9 and 4.7 THz for a balloon borne terahertz observatory , 2023, 2311.05755.

[2]  C. Walker,et al.  Beam Waist Properties of Spiral Antenna Coupled HEB Mixers at Supra-THz Frequencies , 2023, IEEE Transactions on Terahertz Science and Technology.

[3]  S. Cherednichenko,et al.  Heterodyne performance and characteristics of terahertz MgB2 hot electron bolometers , 2023, Journal of Applied Physics.

[4]  C. Walker,et al.  Gal/Xgal U/LDB Spectroscopic/Stratospheric THz Observatory: GUSTO , 2022, Astronomical Telescopes + Instrumentation.

[5]  Themal I. Ellawala,et al.  Indeterminacies: Queer Tales of Love and Suffering , 2023, Feminist Review.

[6]  S. Cherednichenko,et al.  Low noise MgB2 hot electron bolometer mixer operated at 5.3 THz and at 20 K , 2021, Applied Physics Letters.

[7]  Paul Hartogh,et al.  Orbiting Astronomical Satellite for Investigating Stellar Systems (OASIS): following the water trail from the interstellar medium to oceans , 2021, Optical Engineering + Applications.

[8]  G. Savini,et al.  The far-infrared spectroscopic surveyor (FIRSS) , 2021, Experimental Astronomy.

[9]  R. Klessen,et al.  ASTHROS: The astrophysics stratospheric telescope for high spectral resolution observations at submillimeter-wavelengths , 2020, Ground-based and Airborne Telescopes VIII.

[10]  C. H. Zhang,et al.  Microwave probing of relaxation oscillations related to terahertz power detection in superconducting hot electron bolometers , 2019, Superconductor Science and Technology.

[11]  A. Stark,et al.  Probing ISM Structure in Trumpler 14 and Carina I Using the Stratospheric Terahertz Observatory 2 , 2019, The Astrophysical Journal.

[12]  U. U. Graf,et al.  The upGREAT Dual Frequency Heterodyne Arrays for SOFIA , 2018, Journal of Astronomical Instrumentation.

[13]  T. Klapwijk,et al.  Engineering Physics of Superconducting Hot-Electron Bolometer Mixers , 2017, IEEE Transactions on Terahertz Science and Technology.

[14]  S. Shi,et al.  Investigation of the Performance of NbN Superconducting HEB Mixers of Different Critical Temperatures , 2017, IEEE Transactions on Applied Superconductivity.

[15]  J. Kawamura,et al.  Optimization of Parameters of MgB2 Hot-Electron Bolometers , 2017, IEEE Transactions on Applied Superconductivity.

[16]  Evgenii Novoselov,et al.  Low noise terahertz MgB2 hot-electron bolometer mixers with an 11 GHz bandwidth , 2017 .

[17]  Gregory Goltsman,et al.  Superconducting hot-electron bolometer: from the discovery of hot-electron phenomena to practical applications , 2016 .

[18]  N. Reyes,et al.  First Supra-THz Heterodyne Array Receivers for Astronomy With the SOFIA Observatory , 2015, IEEE Transactions on Terahertz Science and Technology.

[19]  X. Liu Demonstration of 2 x 2 heterodyne receiver array at 1.4THz using HEB mixers and Fourier phase grating LO , 2015 .

[20]  Urs U. Graf,et al.  4.7-THz Superconducting Hot Electron Bolometer Waveguide Mixer , 2015, IEEE Transactions on Terahertz Science and Technology.

[21]  Yuan Ren,et al.  Hot electron bolometer heterodyne receiver with a 4.7-THz quantum cascade laser as a local oscillator , 2012, 1208.5776.

[22]  M. Justen,et al.  Terahertz hot electron bolometer waveguide mixers for GREAT , 2012, 1204.2381.

[23]  D. J. Hayton,et al.  Stabilized hot electron bolometer heterodyne receiver at 2.5 THz , 2012 .

[24]  K. S. Yngvesson,et al.  Impedance of Hot-Electron Bolometer Mixers at Terahertz Frequencies , 2011, IEEE Transactions on Terahertz Science and Technology.

[25]  Sheng-Cai Shi,et al.  Twin-Slot Antenna Coupled NbN Hot Electron Bolometer Mixer at 2.5 THz , 2011, IEEE Transactions on Terahertz Science and Technology.

[26]  B. Voronov,et al.  Low noise and wide bandwidth of NbN hot-electron bolometer mixers , 2011 .

[27]  T. Klapwijk,et al.  Noise temperature and beam pattern of an NbN hot electron bolometer mixer at 5.25 THz , 2010 .

[28]  K. S. Yngvesson,et al.  Quantum noise in a terahertz hot electron bolometer mixer , 2010 .

[29]  H. Hubers,et al.  Terahertz Heterodyne Receivers , 2008, IEEE Journal of Selected Topics in Quantum Electronics.

[30]  T. Klapwijk,et al.  Superconducting contacts and NbN HEB mixer performance , 2008 .

[31]  Sergey Cherednichenko,et al.  Hot-electron bolometer terahertz mixers for the Herschel Space Observatory. , 2008, The Review of scientific instruments.

[32]  T. M. Klapwijk,et al.  Low noise NbN hot electron bolometer mixer at 4.3?THz , 2007 .

[33]  I. Angelov,et al.  The Direct Detection Effect in the Hot-Electron Bolometer Mixer Sensitivity Calibration , 2007, IEEE Transactions on Microwave Theory and Techniques.

[34]  M. Siegel,et al.  Terahertz Performance of Integrated Lens Antennas With a Hot-Electron Bolometer , 2007, IEEE Transactions on Microwave Theory and Techniques.

[35]  T. M. Klapwijk,et al.  Full characterization and analysis of a terahertz heterodyne receiver based on a NbN hot electron bolometer , 2006 .

[36]  Andrey M. Baryshev,et al.  Direct detection effect in small volume hot electron bolometer mixers , 2005 .

[37]  Teun M. Klapwijk,et al.  Doubling of sensitivity and bandwidth in phonon-cooled hot-electron bolometer mixers , 2004, SPIE Astronomical Telescopes + Instrumentation.

[38]  T. M. Klapwijk,et al.  Low noise NbN superconducting hot electron bolometer mixers at 1.9 and 2.5 THz , 2004 .

[39]  Pourya Khosropanah,et al.  1.6 THz heterodyne receiver for the far infrared space telescope , 2002 .

[40]  K. Yngvesson,et al.  Detection and Interpretation of Bistability Effects in NbN HEB Devices , 2002 .

[41]  H. Richter,et al.  NbN hot electron bolometric mixers for terahertz receivers , 2001 .

[42]  Gregory N. Goltsman,et al.  Design and performance of the lattice-cooled hot-electron terahertz mixer , 2000 .

[43]  Erik L. Kollberg,et al.  Conversion gain and fluctuation noise of phonon-cooled hot-electron bolometers in hot-spot regime , 2000 .

[44]  T. M. Klapwijk,et al.  Hotspot mixing: A framework for heterodyne mixing in superconducting hot-electron bolometers , 1999 .

[45]  G. Gol'tsman,et al.  Quasioptical Phonon-Cooled NbN Hot-Electron Bolometer Mixers at 0.5-1.1 THz , 1998 .

[46]  Boris S. Karasik,et al.  Noise temperature limit of a superconducting hot‐electron bolometer mixer , 1996 .

[47]  Boris S. Karasik,et al.  Conversion gain and noise of niobium superconducting hot-electron-mixers , 1995 .

[48]  S. Shi,et al.  A quasi-optical NbN HEB mixer with 800 K DSB noise temperature at 2 . 5 THz , 2011 .

[49]  Boris S. Karasik,et al.  Noise and Bandwidth Measurements of Diffusion-Cooled Nb Hot-Electron Bolometer Mixers at Frequencies Above the Superconductive Energy Gap , 1999 .

[50]  J. Villégier,et al.  Terahertz NbN hot electron bolometer fabrication process with a reduced number of steps , 2022 .