Co-evolutionary Signals in Metabotropic Glutamate Receptors Capture Residue Contacts and Long-Range Functional Interactions.

[1]  O. Lichtarge,et al.  Recurrent high-impact mutations at cognate structural positions in class A G protein-coupled receptors expressed in tumors , 2021, Proceedings of the National Academy of Sciences.

[2]  T. Wensel,et al.  The mGluR6 ligand-binding domain, but not the C-terminal domain, is required for synaptic localization in retinal ON-bipolar cells , 2021, The Journal of biological chemistry.

[3]  P. Kammermeier,et al.  The evidence for and consequences of metabotropic glutamate receptor heterodimerization , 2021, Neuropharmacology.

[4]  Oriol Vinyals,et al.  Highly accurate protein structure prediction with AlphaFold , 2021, Nature.

[5]  Shengzhong Feng,et al.  COMTOP: Protein Residue–Residue Contact Prediction through Mixed Integer Linear Optimization , 2021, Membranes.

[6]  P. Conn,et al.  Targeting metabotropic glutamate receptors for the treatment of depression and other stress-related disorders , 2021, Neuropharmacology.

[7]  Peng Liu,et al.  Structures of human mGlu2 and mGlu7 homo- and heterodimers , 2021, Nature.

[8]  Yu Zhou,et al.  Structures of Gi-bound metabotropic glutamate receptors mGlu2 and mGlu4 , 2021, Nature.

[9]  Dukka B Kc,et al.  Deep Learning-Based Advances in Protein Structure Prediction , 2021, International journal of molecular sciences.

[10]  M. Borde,et al.  Glutamatergic Control Of A Pattern-Generating Central Nucleus In A Gymnotiform Fish. , 2021, Journal of neurophysiology.

[11]  P. Bork,et al.  Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation , 2021, Nucleic Acids Res..

[12]  K. Chung,et al.  Coevolution underlies GPCR-G protein selectivity and functionality , 2021, Scientific Reports.

[13]  M. Madan Babu,et al.  GPCR activation mechanisms across classes and macro/microscales , 2021, Nature Structural & Molecular Biology.

[14]  Chen Chen,et al.  Combination of deep neural network with attention mechanism enhances the explainability of protein contact prediction , 2020, bioRxiv.

[15]  S. Urban,et al.  Decoding the Functional Evolution of an Intramembrane Protease Superfamily by Statistical Coupling Analysis. , 2020, Structure.

[16]  Deo R. Singh,et al.  Defining the Homo- and Heterodimerization Propensities of Metabotropic Glutamate Receptors , 2020, Cell reports.

[17]  E. Isacoff,et al.  Conformational pathway provides unique sensitivity to a synaptic mGluR , 2019, Nature Communications.

[18]  Jörn M. Schmiedel,et al.  Determining protein structures using deep mutagenesis , 2019, Nature Genetics.

[19]  Jun Hu,et al.  ResPRE: high-accuracy protein contact prediction by coupling precision matrix with deep residual neural networks , 2019, Bioinform..

[20]  E. Calipari,et al.  Shared Behavioral and Neurocircuitry Disruptions in Drug Addiction, Obesity, and Binge Eating Disorder: Focus on Group I mGluRs in the Mesolimbic Dopamine Pathway. , 2019, ACS chemical neuroscience.

[21]  J. Skolnick,et al.  DESTINI: A deep-learning approach to contact-driven protein structure prediction , 2019, Scientific Reports.

[22]  Konstantinos D. Tsirigos,et al.  SignalP 5.0 improves signal peptide predictions using deep neural networks , 2019, Nature Biotechnology.

[23]  M. J. Robertson,et al.  Structural insights into the activation of metabotropic glutamate receptors , 2019, Nature.

[24]  C. Goudet,et al.  Emerging Trends in Pain Modulation by Metabotropic Glutamate Receptors , 2019, Front. Mol. Neurosci..

[25]  Jinbo Xu Distance-based protein folding powered by deep learning , 2018, Proceedings of the National Academy of Sciences.

[26]  Robert P. Sheridan,et al.  The EVcouplings Python framework for coevolutionary sequence analysis , 2018, bioRxiv.

[27]  J. Conn,et al.  The therapeutic potential of metabotropic glutamate receptor modulation for schizophrenia , 2018, Current opinion in pharmacology.

[28]  Bonnie Berger,et al.  Enhancing Evolutionary Couplings with Deep Convolutional Neural Networks , 2017, Cell systems.

[29]  L. Prézeau,et al.  Pharmacological evidence for a metabotropic glutamate receptor heterodimer in neuronal cells , 2017, eLife.

[30]  S. P. Moran,et al.  Targeting metabotropic glutamate receptors for novel treatments of schizophrenia , 2017, Molecular Brain.

[31]  Daniel J Rigden,et al.  Applications of contact predictions to structural biology , 2017, IUCrJ.

[32]  E. Isacoff,et al.  Mechanism of Assembly and Cooperativity of Homomeric and Heteromeric Metabotropic Glutamate Receptors , 2016, Neuron.

[33]  Maria F. Sassano,et al.  PRESTO-TANGO: an open-source resource for interrogation of the druggable human GPCR-ome , 2015, Nature Structural &Molecular Biology.

[34]  Stanislas Leibler,et al.  Protein Sectors: Statistical Coupling Analysis versus Conservation , 2014, PLoS Comput. Biol..

[35]  Ying Liu,et al.  Evol and ProDy for bridging protein sequence evolution and structural dynamics , 2014, Bioinform..

[36]  A. Doré,et al.  Structure of class C GPCR metabotropic glutamate receptor 5 transmembrane domain , 2014, Nature.

[37]  Carlo Baldassi,et al.  Fast and Accurate Multivariate Gaussian Modeling of Protein Families: Predicting Residue Contacts and Protein-Interaction Partners , 2014, PloS one.

[38]  J. M. Mathiesen,et al.  mGluR5: Exploration of Orthosteric and Allosteric Ligand Binding Pockets and Their Applications to Drug Discovery , 2014, Neurochemical Research.

[39]  José N. Onuchic,et al.  Toward rationally redesigning bacterial two-component signaling systems using coevolutionary information , 2014, Proceedings of the National Academy of Sciences.

[40]  Burkhard Rost,et al.  FreeContact: fast and free software for protein contact prediction from residue co-evolution , 2014, BMC Bioinformatics.

[41]  Jennifer L. Knies,et al.  FISHER'S GEOMETRIC MODEL OF ADAPTATION MEETS THE FUNCTIONAL SYNTHESIS: DATA ON PAIRWISE EPISTASIS FOR FITNESS YIELDS INSIGHTS INTO THE SHAPE AND SIZE OF PHENOTYPE SPACE , 2013, Evolution; international journal of organic evolution.

[42]  H. Schiöth,et al.  G protein-coupled receptor deorphanizations. , 2013, Annual review of pharmacology and toxicology.

[43]  Michael S. Breen,et al.  Epistasis as the primary factor in molecular evolution , 2012, Nature.

[44]  Yuanhui Mao,et al.  Coevolution in RNA Molecules Driven by Selective Constraints: Evidence from 5S rRNA , 2012, PloS one.

[45]  Thomas A. Hopf,et al.  Three-Dimensional Structures of Membrane Proteins from Genomic Sequencing , 2012, Cell.

[46]  Denice C. Bay,et al.  Phylogenetic and coevolutionary analysis of the β-barrel protein family comprised of mitochondrial porin (VDAC) and Tom40. , 2012, Biochimica et biophysica acta.

[47]  E. Grove,et al.  Ancient deuterostome origins of vertebrate brain signalling centres , 2012, Nature.

[48]  Angela D. Wilkins,et al.  Evolutionary trace for prediction and redesign of protein functional sites. , 2012, Methods in molecular biology.

[49]  Thomas A. Hopf,et al.  Protein 3D Structure Computed from Evolutionary Sequence Variation , 2011, PloS one.

[50]  C. Sander,et al.  Direct-coupling analysis of residue coevolution captures native contacts across many protein families , 2011, Proceedings of the National Academy of Sciences.

[51]  Ben Lehner,et al.  Molecular mechanisms of epistasis within and between genes. , 2011, Trends in genetics : TIG.

[52]  L. Prézeau,et al.  Dimers and beyond: The functional puzzles of class C GPCRs. , 2011, Pharmacology & therapeutics.

[53]  D. J. Kiviet,et al.  Reciprocal sign epistasis is a necessary condition for multi-peaked fitness landscapes. , 2011, Journal of theoretical biology.

[54]  Robin D Dowell,et al.  Genotype to Phenotype: A Complex Problem , 2010, Science.

[55]  Olivier Lichtarge,et al.  Evolution-guided discovery and recoding of allosteric pathway specificity determinants in psychoactive bioamine receptors , 2010, Proceedings of the National Academy of Sciences.

[56]  P. Conn,et al.  Metabotropic glutamate receptors: physiology, pharmacology, and disease. , 2010, Annual review of pharmacology and toxicology.

[57]  Terence Hwa,et al.  High-resolution protein complexes from integrating genomic information with molecular simulation , 2009, Proceedings of the National Academy of Sciences.

[58]  P Jeffrey Conn,et al.  Glutamate receptors as therapeutic targets for Parkinson's disease. , 2009, CNS & neurological disorders drug targets.

[59]  Najeeb M. Halabi,et al.  Protein Sectors: Evolutionary Units of Three-Dimensional Structure , 2009, Cell.

[60]  T. Hwa,et al.  Identification of direct residue contacts in protein–protein interaction by message passing , 2009, Proceedings of the National Academy of Sciences.

[61]  Gregory B. Gloor,et al.  Mutual information without the influence of phylogeny or entropy dramatically improves residue contact prediction , 2008, Bioinform..

[62]  R. Kucharski,et al.  Characterization of a metabotropic glutamate receptor in the honeybee (Apis mellifera): implications for memory formation , 2007, Invertebrate Neuroscience.

[63]  O. Lichtarge,et al.  Evolutionary and structural feedback on selection of sequences for comparative analysis of proteins , 2006, Proteins.

[64]  A. Nistri,et al.  Tuning and playing a motor rhythm: how metabotropic glutamate receptors orchestrate generation of motor patterns in the mammalian central nervous system , 2006, The Journal of physiology.

[65]  Stephen P. Miller,et al.  The Biochemical Architecture of an Ancient Adaptive Landscape , 2005, Science.

[66]  Ariane Ramaekers,et al.  The Drosophila Metabotropic Glutamate Receptor DmGluRA Regulates Activity-Dependent Synaptic Facilitation and Fine Synaptic Morphology , 2004, The Journal of Neuroscience.

[67]  O. Lichtarge,et al.  A family of evolution-entropy hybrid methods for ranking protein residues by importance. , 2004, Journal of molecular biology.

[68]  Robert C. Edgar,et al.  MUSCLE: multiple sequence alignment with high accuracy and high throughput. , 2004, Nucleic acids research.

[69]  O. Lichtarge,et al.  Evolutionary Trace of G Protein-coupled Receptors Reveals Clusters of Residues That Determine Global and Class-specific Functions* , 2004, Journal of Biological Chemistry.

[70]  I. Aránguez,et al.  Expression and functional properties of group I metabotropic glutamate receptors in bovine chromaffin cells , 2004, Journal of neuroscience research.

[71]  P. Shannon,et al.  Cytoscape: a software environment for integrated models of biomolecular interaction networks. , 2003, Genome research.

[72]  O. Lichtarge,et al.  Combining inference from evolution and geometric probability in protein structure evaluation. , 2003, Journal of molecular biology.

[73]  L. Prézeau,et al.  Evolution, structure, and activation mechanism of family 3/C G-protein-coupled receptors. , 2003, Pharmacology & therapeutics.

[74]  H. Schiöth,et al.  The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. , 2003, Molecular pharmacology.

[75]  S. Sunyaev,et al.  Dobzhansky–Muller incompatibilities in protein evolution , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[76]  S. Nakanishi,et al.  Structural basis of glutamate recognition by a dimeric metabotropic glutamate receptor , 2000, Nature.

[77]  A. Selverston,et al.  Group I, II, and III mGluR compounds affect rhythm generation in the gastric circuit of the crustacean stomatogastric ganglion. , 2000, Journal of neurophysiology.

[78]  Simon Alford,et al.  Metabotropic Glutamate Receptor–Mediated Control of Neurotransmitter Release , 1998, Neuron.

[79]  C. Romano,et al.  Metabotropic Glutamate Receptor 5 Is a Disulfide-linked Dimer* , 1996, The Journal of Biological Chemistry.

[80]  F. Cohen,et al.  An evolutionary trace method defines binding surfaces common to protein families. , 1996, Journal of molecular biology.

[81]  R. Duvoisin,et al.  The metabotropic glutamate receptors: Structure and functions , 1995, Neuropharmacology.

[82]  B. Conklin,et al.  Substitution of three amino acids switches receptor specificity of Gqα to that of Giα , 1993, Nature.

[83]  B. Erman,et al.  Information‐theoretical entropy as a measure of sequence variability , 1991, Proteins.