ISOGEOMETRIC COLLOCATION METHODS

We initiate the study of collocation methods for NURBS-based isogeometric analysis. The idea is to connect the superior accuracy and smoothness of NURBS basis functions with the low computational cost of collocation. We develop a one-dimensional theoretical analysis, and perform numerical tests in one, two and three dimensions. The numerical results obtained confirm theoretical results and illustrate the potential of the methodology.

[1]  D. F. Rogers,et al.  An Introduction to NURBS: With Historical Perspective , 2011 .

[2]  Thomas J. R. Hughes,et al.  Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .

[3]  Alessandro Reali,et al.  Duality and unified analysis of discrete approximations in structural dynamics and wave propagation : Comparison of p-method finite elements with k-method NURBS , 2008 .

[4]  G. Sangalli,et al.  A fully ''locking-free'' isogeometric approach for plane linear elasticity problems: A stream function formulation , 2007 .

[5]  T. Hughes,et al.  Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows , 2007 .

[6]  Victor M. Calo,et al.  Weak Dirichlet Boundary Conditions for Wall-Bounded Turbulent Flows , 2007 .

[7]  Victor M. Calo,et al.  The role of continuity in residual-based variational multiscale modeling of turbulence , 2007 .

[8]  Thomas J. R. Hughes,et al.  Patient-Specific Vascular NURBS Modeling for Isogeometric Analysis of Blood Flow , 2007, IMR.

[9]  Alessandro Reali,et al.  Studies of Refinement and Continuity in Isogeometric Structural Analysis (Preprint) , 2007 .

[10]  Alessandro Reali,et al.  Isogeometric Analysis of Structural Vibrations , 2006 .

[11]  T. Hughes,et al.  ISOGEOMETRIC ANALYSIS: APPROXIMATION, STABILITY AND ERROR ESTIMATES FOR h-REFINED MESHES , 2006 .

[12]  Alessandro Reali,et al.  AN ISO GEOMETRIC ANALYSIS APPROACH FOR THE STUDY OF STRUCTURAL VIBRATIONS , 2006 .

[13]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[14]  Javier Jiménez,et al.  A critical evaluation of the resolution properties of B-Spline and compact finite difference methods , 2001 .

[15]  G. Farin NURB curves and surfaces: from projective geometry to practical use , 1995 .

[16]  R. Jia Spline interpolation at knot averages , 1988 .

[17]  Stephen Demko,et al.  On the existence of interpolating projections onto spline spaces , 1985 .

[18]  C. D. Boor,et al.  Collocation at Gaussian Points , 1973 .

[19]  B. Simeon,et al.  Adaptive isogeometric analysis by local h-refinement with T-splines , 2010 .

[20]  John A. Evans,et al.  Isogeometric Analysis , 2010 .

[21]  F. Auricchio,et al.  The importance of the exact satisfaction of the incompressibility constraint in nonlinear elasticity: mixed FEMs versus NURBS-based approximations , 2010 .

[22]  T. Hughes,et al.  Efficient quadrature for NURBS-based isogeometric analysis , 2010 .

[23]  Jesús Ildefonso Díaz Díaz,et al.  ON THE COMPLEX GINZBURG–LANDAU EQUATION WITH A DELAYED FEEDBACK , 2006 .

[24]  Richard W. Johnson,et al.  A B-spline collocation method for solving the incompressible Navier-Stokes equations using an ad hoc method: the Boundary Residual method , 2005 .

[25]  Les A. Piegl,et al.  The NURBS book (2nd ed.) , 1997 .

[26]  D. Arnold,et al.  On the Asymptotic Convergence of Spline Collocation Methods for Partial Differential Equations , 1984 .

[27]  Douglas N. Arnold,et al.  On the asymptotic convergence of collocation methods , 1983 .

[28]  L. Schumaker Spline Functions: Basic Theory , 1981 .

[29]  C. R. Deboor,et al.  A practical guide to splines , 1978 .

[30]  P. M. Prenter Splines and variational methods , 1975 .