Force fields and molecular dynamics simulations

The objective of this review is to serve as an introductory guide for the non-expert to the exciting field of Molecular Dynamics (MD). MD simulations generate a phase space trajectory by integrating the classical equations of motion for a system of N particles. Here I review the basic concepts needed to understand the technique, what are the key elements to perform a simulation and which is the information that can be extracted from it. I will start defining what is a force field, which are the terms composing a classical force field, how the parameters of the potential are optimized, and which are the more popular force fields currently employed and the lines of research to improve them. Then the Molecular Dynamics technique will be introduced, including a general overview of the main algorithms employed to integrate the equations of motion, compute the long-range forces, work on different thermodynamic ensembles, or reduce the computational time. Finally the main properties that can be computed from a MD trajectory are briefly introduced.

[1]  Arieh Warshel,et al.  Studies of proton translocations in biological systems: simulating proton transport in carbonic anhydrase by EVB-based models. , 2004, Biophysical journal.

[2]  Ulrich Essmann,et al.  Effect of the treatment of long‐range forces on the dynamics of ions in aqueous solutions , 1995 .

[3]  Benjamin Lindner,et al.  Scaling of Multimillion-Atom Biological Molecular Dynamics Simulation on a Petascale Supercomputer. , 2009, Journal of chemical theory and computation.

[4]  P. Kollman,et al.  A well-behaved electrostatic potential-based method using charge restraints for deriving atomic char , 1993 .

[5]  Tetsuya Morishita,et al.  Fluctuation formulas in molecular-dynamics simulations with the weak coupling heat bath , 2000 .

[6]  K Schulten,et al.  VMD: visual molecular dynamics. , 1996, Journal of molecular graphics.

[7]  Thomas A. Halgren,et al.  Merck molecular force field. II. MMFF94 van der Waals and electrostatic parameters for intermolecular. interactions , 1996, J. Comput. Chem..

[8]  Greg L. Hura,et al.  What can x-ray scattering tell us about the radial distribution functions of water? , 2000 .

[9]  Yoshiteru Yonetani,et al.  Liquid water simulation: a critical examination of cutoff length. , 2006, The Journal of chemical physics.

[10]  R. Dror,et al.  Long-timescale molecular dynamics simulations of protein structure and function. , 2009, Current opinion in structural biology.

[11]  Jerome K. Percus,et al.  Ensemble Dependence of Fluctuations with Application to Machine Computations , 1967 .

[12]  Charles L. Brooks,et al.  Modern protein force fields behave comparably in molecular dynamics simulations , 2002, J. Comput. Chem..

[13]  Nevena Todorova,et al.  Systematic comparison of empirical forcefields for molecular dynamic simulation of insulin. , 2008, The journal of physical chemistry. B.

[14]  P. Hünenberger,et al.  Alternative schemes for the inclusion of a reaction-field correction into molecular dynamics simulations: Influence on the simulated energetic, structural, and dielectric properties of liquid water , 1998 .

[15]  Michael K. Gilson,et al.  Fast Assignment of Accurate Partial Atomic Charges: An Electronegativity Equalization Method that Accounts for Alternate Resonance Forms , 2003, J. Chem. Inf. Comput. Sci..

[16]  S. L. Mayo,et al.  DREIDING: A generic force field for molecular simulations , 1990 .

[17]  H. C. Andersen Molecular dynamics simulations at constant pressure and/or temperature , 1980 .

[18]  Wilfred F. van Gunsteren,et al.  A generalized reaction field method for molecular dynamics simulations , 1995 .

[19]  Arieh Warshel,et al.  Polarizable Force Fields:  History, Test Cases, and Prospects. , 2007, Journal of chemical theory and computation.

[20]  Graham Hills,et al.  The computer simulation of polar liquids , 1979 .

[21]  Martin Neumann,et al.  Consistent calculation of the static and frequency-dependent dielectric constant in computer simulations , 1984 .

[22]  Bertrand Guillot,et al.  A reappraisal of what we have learnt during three decades of computer simulations on water , 2002 .

[23]  Experimental verification of force fields for molecular dynamics simulations using Gly-Pro-Gly-Gly. , 2010, The journal of physical chemistry. B.

[24]  Anastassia N Alexandrova,et al.  Polarization Effects for Hydrogen-Bonded Complexes of Substituted Phenols with Water and Chloride Ion. , 2007, Journal of chemical theory and computation.

[25]  Ming-Jing Hwang,et al.  Derivation of class II force fields. I. Methodology and quantum force field for the alkyl functional group and alkane molecules , 1994, J. Comput. Chem..

[26]  P. Kusalik,et al.  Structure in liquid water: A study of spatial distribution functions , 1993 .

[27]  C. Breneman,et al.  Determining atom‐centered monopoles from molecular electrostatic potentials. The need for high sampling density in formamide conformational analysis , 1990 .

[28]  Robert Zwanzig,et al.  STATISTICAL ERROR DUE TO FINITE TIME AVERAGING IN COMPUTER EXPERIMENTS. , 1969 .

[29]  W. Goddard,et al.  Charge equilibration for molecular dynamics simulations , 1991 .

[30]  L. Hove Correlations in Space and Time and Born Approximation Scattering in Systems of Interacting Particles , 1954 .

[31]  Christopher I. Bayly,et al.  Fast, efficient generation of high‐quality atomic charges. AM1‐BCC model: II. Parameterization and validation , 2002, J. Comput. Chem..

[32]  Bermejo,et al.  Dynamic structure factor of a helium-neon dense gas mixture: Crossover from hydrodynamics to the microscopic regime. , 1995, Physical review letters.

[33]  Donald G Truhlar,et al.  X-Pol Potential: An Electronic Structure-Based Force Field for Molecular Dynamics Simulation of a Solvated Protein in Water. , 2009, Journal of chemical theory and computation.

[34]  D. Heyes,et al.  MOLECULAR DYNAMICS AT CONSTANT PRESSURE AND TEMPERATURE , 1983 .

[35]  D. C. Rapaport,et al.  The Art of Molecular Dynamics Simulation , 1997 .

[36]  R. Martin,et al.  Electronic Structure: Basic Theory and Practical Methods , 2004 .

[37]  R. Ornstein,et al.  Effect of periodic box size on aqueous molecular dynamics simulation of a DNA dodecamer with particle-mesh Ewald method. , 1997, Biophysical journal.

[38]  Marvin Bishop,et al.  Error analysis in computer simulations , 1987 .

[39]  Holger Gohlke,et al.  The Amber biomolecular simulation programs , 2005, J. Comput. Chem..

[40]  Evaluation of ab Initio Charge Determination Methods for Use in Continuum Solvation Calculations , 2003 .

[41]  Peter L. Freddolino,et al.  Molecular dynamics simulations of the complete satellite tobacco mosaic virus. , 2006, Structure.

[42]  Jenn-Huei Lii,et al.  An improved force field (MM4) for saturated hydrocarbons , 1996, J. Comput. Chem..

[43]  S. Nosé A molecular dynamics method for simulations in the canonical ensemble , 1984 .

[44]  J. Berg,et al.  Molecular dynamics simulations of biomolecules , 2002, Nature Structural Biology.

[45]  Michael L. Klein,et al.  Coarse grain models and the computer simulation of soft materials , 2004 .

[46]  H. Urey,et al.  The Vibrations of Pentatonic Tetrahedral Molecules , 1931 .

[47]  C. Vega,et al.  What ice can teach us about water interactions: a critical comparison of the performance of different water models. , 2009, Faraday discussions.

[48]  Gerrit Groenhof,et al.  GROMACS: Fast, flexible, and free , 2005, J. Comput. Chem..

[49]  Benoît Roux,et al.  Modeling induced polarization with classical Drude oscillators: Theory and molecular dynamics simulation algorithm , 2003 .

[50]  Jiali Gao,et al.  A Polarizable Intermolecular Potential Function for Simulation of Liquid Alcohols , 1995 .

[51]  W. Smith THE DL POLY 2 USER MANUAL , 2009 .

[52]  W. V. van Gunsteren,et al.  On the Calculation of Atomic Forces in Classical Simulation Using the Charge-on-Spring Method To Explicitly Treat Electronic Polarization. , 2007, Journal of chemical theory and computation.

[53]  P. Jedlovszky,et al.  Comparison of different water models from ambient to supercritical conditions: A Monte Carlo simulation and molecular Ornstein-Zernike study , 1999 .

[54]  B. Smit,et al.  Phase diagrams of Lennard‐Jones fluids , 1992 .

[55]  Wilfred F. van Gunsteren,et al.  On the relative merits of flexible versus rigid models for use in computer simulations of molecular liquids , 1996 .

[56]  Norman L. Allinger,et al.  Conformational analysis—CI , 1974 .

[57]  W. L. Jorgensen,et al.  Development and Testing of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids , 1996 .

[58]  G. Jackson,et al.  Reaction-field and Ewald summation methods in Monte Carlo simulations of dipolar liquid crystals , 1997 .

[59]  A. Laaksonen,et al.  Visualization of solvation structures in liquid mixtures. , 1997, Journal of molecular graphics & modelling.

[60]  Alexander D. MacKerell,et al.  All-atom empirical potential for molecular modeling and dynamics studies of proteins. , 1998, The journal of physical chemistry. B.

[61]  J. A. Barker,et al.  Monte Carlo studies of the dielectric properties of water-like models , 1973 .

[62]  H. Berendsen,et al.  Molecular dynamics with coupling to an external bath , 1984 .

[63]  Hai Lin,et al.  QM/MM: What Have We Learned, Where Are We, and Where Do We Go from Here? , 2007 .

[64]  Masakatsu Watanabe,et al.  Dynamics of molecules with internal degrees of freedom by multiple time-step methods , 1993 .

[65]  J. Banavar,et al.  Computer Simulation of Liquids , 1988 .

[66]  Gerald R. Kneller,et al.  nMOLDYN: A program package for a neutron scattering oriented analysis of Molecular Dynamics simulations , 1995 .

[67]  Jiali Gao,et al.  The Design of a Next Generation Force Field: The X-POL Potential. , 2007, Journal of chemical theory and computation.

[68]  H. Sun,et al.  COMPASS: An ab Initio Force-Field Optimized for Condensed-Phase ApplicationsOverview with Details on Alkane and Benzene Compounds , 1998 .

[69]  J. Gasteiger,et al.  ITERATIVE PARTIAL EQUALIZATION OF ORBITAL ELECTRONEGATIVITY – A RAPID ACCESS TO ATOMIC CHARGES , 1980 .

[70]  P. Hünenberger Thermostat Algorithms for Molecular Dynamics Simulations , 2005 .

[71]  M. Herman,et al.  The ground electronic state of 1,2-dichloroethane I. Ab initio investigation of the geometrical, vibrational and torsional structure , 1998 .

[72]  W. Goddard,et al.  UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations , 1992 .

[73]  Alexander D. MacKerell,et al.  Combined ab initio/empirical approach for optimization of Lennard‐Jones parameters for polar‐neutral compounds , 2002, J. Comput. Chem..

[74]  P. Kollman,et al.  A Second Generation Force Field for the Simulation of Proteins, Nucleic Acids, and Organic Molecules , 1995 .

[75]  Norman L. Allinger,et al.  Molecular mechanics. The MM3 force field for hydrocarbons. 1 , 1989 .

[76]  Jadwiga Kuta,et al.  ForceFit: A code to fit classical force fields to quantum mechanical potential energy surfaces , 2010, J. Comput. Chem..

[77]  A. Barnes,et al.  Neutron and x-ray diffraction studies of liquids and glasses , 2005 .

[78]  M. Levitt,et al.  Theoretical studies of enzymic reactions: dielectric, electrostatic and steric stabilization of the carbonium ion in the reaction of lysozyme. , 1976, Journal of molecular biology.

[79]  T. Darden,et al.  Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems , 1993 .

[80]  Margaret E. Johnson,et al.  Current status of the AMOEBA polarizable force field. , 2010, The journal of physical chemistry. B.

[81]  M. Swart,et al.  DRF90: a polarizable force field , 2006 .

[82]  A. Gavezzotti,et al.  Empirical intermolecular potentials for organic crystals: the `6‐exp' approximation revisited , 1993 .

[83]  Chris Oostenbrink,et al.  A biomolecular force field based on the free enthalpy of hydration and solvation: The GROMOS force‐field parameter sets 53A5 and 53A6 , 2004, J. Comput. Chem..

[84]  Piotr Cieplak,et al.  Polarization effects in molecular mechanical force fields , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[85]  Markus Christen,et al.  The GROMOS software for biomolecular simulation: GROMOS05 , 2005, J. Comput. Chem..

[86]  Kenny B. Lipkowitz,et al.  Reviews in Computational Chemistry , 1990 .

[87]  M. Klein,et al.  Constant pressure molecular dynamics algorithms , 1994 .

[88]  Peter S. Lomdahl,et al.  MOLECULAR DYNAMICS COMES OF AGE: 320 BILLION ATOM SIMULATION ON BlueGene/L , 2006 .

[89]  Ulf Ryde,et al.  Comparison of methods for deriving atomic charges from the electrostatic potential and moments , 1998 .

[90]  Laxmikant V. Kalé,et al.  Scalable molecular dynamics with NAMD , 2005, J. Comput. Chem..

[91]  Bernard R. Brooks,et al.  New spherical‐cutoff methods for long‐range forces in macromolecular simulation , 1994, J. Comput. Chem..

[92]  S. Nosé,et al.  Constant pressure molecular dynamics for molecular systems , 1983 .

[93]  Detlef W. M. Hofmann,et al.  A new reactive potential for the molecular dynamics simulation of liquid water , 2007 .

[94]  Mark E. Tuckerman,et al.  Explicit reversible integrators for extended systems dynamics , 1996 .

[95]  M. Saboungi,et al.  Structure of a prototypic ionic liquid: ethyl-methylimidazolium bromide. , 2010, Journal of Physical Chemistry B.

[96]  Julian Tirado-Rives,et al.  Potential energy functions for atomic-level simulations of water and organic and biomolecular systems. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[97]  P. Cheung On the calculation of specific heats, thermal pressure coefficients and compressibilities in molecular dynamics simulations , 1977 .

[98]  B. Alder,et al.  Phase Transition for a Hard Sphere System , 1957 .

[99]  T. Halgren Merck molecular force field. I. Basis, form, scope, parameterization, and performance of MMFF94 , 1996, J. Comput. Chem..

[100]  Wei Zhang,et al.  Strike a balance: Optimization of backbone torsion parameters of AMBER polarizable force field for simulations of proteins and peptides , 2006, J. Comput. Chem..

[101]  L. E. Scriven,et al.  A new method of error analysis for molecular simulations , 1991 .

[102]  B. Brooks,et al.  Constant pressure molecular dynamics simulation: The Langevin piston method , 1995 .

[103]  P. P. Ewald Die Berechnung optischer und elektrostatischer Gitterpotentiale , 1921 .

[104]  D. Marx,et al.  Molecular Dynamics - Extending the Scale from Microscopic to Mesoscopic , 2009 .

[105]  Jianpeng Ma,et al.  CHARMM: The biomolecular simulation program , 2009, J. Comput. Chem..

[106]  Thomas A. Halgren Merck molecular force field. III. Molecular geometries and vibrational frequencies for MMFF94 , 1996, J. Comput. Chem..

[107]  A. Gavezzotti,et al.  Molecular Aggregation: Structure Analysis and Molecular Simulation of Crystals and Liquids , 2007 .

[108]  Mark E. Tuckerman,et al.  Reversible multiple time scale molecular dynamics , 1992 .

[109]  Alexander D. MacKerell Empirical Force Fields , 2007 .

[110]  M. Klein,et al.  Nosé-Hoover chains : the canonical ensemble via continuous dynamics , 1992 .

[111]  J. A. Barker,et al.  Structure of water; A Monte Carlo calculation , 1969 .

[112]  Thomas A. Halgren,et al.  Merck molecular force field. IV. conformational energies and geometries for MMFF94 , 1996, J. Comput. Chem..

[113]  Berend Smit,et al.  Understanding Molecular Simulation , 2001 .

[114]  M. Tuckerman,et al.  Understanding Modern Molecular Dynamics: Techniques and Applications , 2000 .

[115]  Arieh Warshel,et al.  Progress in ab initio QM/MM free-energy simulations of electrostatic energies in proteins: accelerated QM/MM studies of pKa, redox reactions and solvation free energies. , 2009, The journal of physical chemistry. B.

[116]  Donald E. Williams,et al.  Improved intermolecular force field for molecules containing H, C, N, and O atoms, with application to nucleoside and peptide crystals , 2001, J. Comput. Chem..

[117]  Godehard Sutmann,et al.  Molecular Dynamics - Vision and Reality , 2006 .

[118]  Hoover,et al.  Canonical dynamics: Equilibrium phase-space distributions. , 1985, Physical review. A, General physics.

[119]  T. Halgren,et al.  Polarizable force fields. , 2001, Current opinion in structural biology.

[120]  R. Buckingham,et al.  The Classical Equation of State of Gaseous Helium, Neon and Argon , 1938 .

[121]  G. Hummer,et al.  Peptide loop-closure kinetics from microsecond molecular dynamics simulations in explicit solvent. , 2002, Journal of the American Chemical Society.

[122]  A. Laio,et al.  Predicting crystal structures: the Parrinello-Rahman method revisited. , 2002, Physical review letters.

[123]  T. Darden,et al.  A smooth particle mesh Ewald method , 1995 .

[124]  Anders Wallqvist,et al.  A molecular dynamics study of polarizable water , 1989 .

[125]  T. Halgren,et al.  Merck molecular force field. V. Extension of MMFF94 using experimental data, additional computational data, and empirical rules , 1996 .

[126]  Alexander D. MacKerell Empirical force fields for biological macromolecules: Overview and issues , 2004, J. Comput. Chem..

[127]  P. M. Rodger,et al.  DL_POLY: Application to molecular simulation , 2002 .

[128]  Steven J. Stuart,et al.  Dynamical fluctuating charge force fields: Application to liquid water , 1994 .

[129]  M. Parrinello,et al.  Crystal structure and pair potentials: A molecular-dynamics study , 1980 .

[130]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[131]  S. Nosé A unified formulation of the constant temperature molecular dynamics methods , 1984 .

[132]  Charles L. Brooks,et al.  CHARMM fluctuating charge force field for proteins: I parameterization and application to bulk organic liquid simulations , 2004, J. Comput. Chem..

[133]  J. M. Haile,et al.  Molecular dynamics simulation : elementary methods / J.M. Haile , 1992 .

[134]  J. M. Haile,et al.  Molecular dynamics simulation : elementary methods / J.M. Haile , 1992 .

[135]  Car,et al.  Unified approach for molecular dynamics and density-functional theory. , 1985, Physical review letters.

[136]  G. Ciccotti,et al.  Numerical Integration of the Cartesian Equations of Motion of a System with Constraints: Molecular Dynamics of n-Alkanes , 1977 .

[137]  A. V. Duin,et al.  ReaxFF: A Reactive Force Field for Hydrocarbons , 2001 .

[138]  B. Tidor Molecular dynamics simulations , 1997, Current Biology.

[139]  Jonathan M. Goodman,et al.  Hydrogen Bonding and π-Stacking: How Reliable are Force Fields? A Critical Evaluation of Force Field Descriptions of Nonbonded Interactions , 2009, J. Chem. Inf. Model..

[140]  W. F. van Gunsteren,et al.  Effect of constraints on the dynamics of macromolecules , 1982 .

[141]  James B. Adams,et al.  Interatomic Potentials from First-Principles Calculations: The Force-Matching Method , 1993, cond-mat/9306054.

[142]  A. Leach Molecular Modelling: Principles and Applications , 1996 .

[143]  Nikos L. Doltsinis,et al.  Quantum Simulations of complex many-body systems:from theory to algorithms , 2002 .

[144]  Wilfred F. van Gunsteren,et al.  Basic ingredients of free energy calculations: A review , 2009, J. Comput. Chem..

[145]  T. Halgren Potential energy functions. , 1995, Current opinion in structural biology.

[146]  H. G. Petersen,et al.  Error estimates on averages of correlated data , 1989 .

[147]  D Fincham,et al.  Shell model simulations by adiabatic dynamics , 1993 .