Control of a flexible beam actuated by macro-fiber composite patches: II. Hysteresis and creep compensation, experimental results

This paper considers a flexible cantilever beam, which is actuated by piezoelectric macro-fiber composite (MFC) patch actuators. For accurate positioning tasks, special attention has to be paid to the inherent nonlinear hysteresis and creep behavior of these actuators. A detailed analysis of the MFC-actuated cantilever verifies that these nonlinearities can be efficiently captured by an operator-based model using Prandtl–Ishlinskii's theory. Based on a Hammerstein-like model with the nonlinearities at the input connected in series with a linear infinite-dimensional beam model it follows that hysteresis and creep effects can be compensated by application of the inverse operator. Experimental results prove the feasibility of this approach. With this result, the tracking accuracy of the combination of the compensator with the flatness-based feedforward control design as proposed in the companion paper (Schrock et al 2011 Smart Mater. Struct. 20 015015) can be verified. Measurements demonstrate the applicability of this approach for the realization of highly dynamic trajectories for the beam's tip deflection.

[1]  Pavel Krejcí,et al.  Compensation of Complex Hysteresis and Creep Effects in Piezoelectrically Actuated Systems —A New Preisach Modeling Approach , 2009, IEEE Transactions on Automatic Control.

[2]  Pavel Krejčí,et al.  Hysteresis, convexity and dissipation in hyperbolic equations , 1996 .

[3]  A. Kugi,et al.  An infinite‐dimensional control concept for piezoelectric structures with complex hysteresis , 2006 .

[4]  Andreas Kugi,et al.  Control of a flexible beam actuated by macro-fiber composite patches: I. Modeling and feedforward trajectory control , 2010 .

[5]  Harvey Thomas Banks,et al.  Smart material structures: Modeling, estimation, and control , 1996 .

[6]  W. Keats Wilkie,et al.  An overview of composite actuators with piezoceramic fibers , 2002 .

[7]  Hartmut Janocha,et al.  Simultane Messung charakteristischer Kenngrößen von Piezoaktoren im Großsignalbetrieb (Simultaneous Measurement of Characteristic Values of Piezoelectric Actuators at Large-signal Operation) , 2002 .

[8]  M. Wien Bemerkung zu der Abhandlung von Hrn. E. Madelung: „Über Magnetisierung durch schnell verlaufende Ströme und die Wirkungsweise des Rutherford‐Marconischen Magnetdetektors”︁ , 2022 .

[9]  K. Kuhnen,et al.  Identification of Linear Error-Models with Projected Dynamical Systems , 2004 .

[10]  M. Brokate,et al.  Hysteresis and Phase Transitions , 1996 .

[11]  E. Madelung,et al.  Über Magnetisierung durch schnellverlaufende Ströme und die Wirkungsweise des Rutherford-Marconischen Magnetdetektors , 1905 .

[12]  K. Kuhnen,et al.  Inverse control of systems with hysteresis and creep , 2001 .

[13]  Peter Haupt,et al.  Continuum Mechanics and Theory of Materials , 1999 .

[14]  Pavel Krejcí,et al.  Existence, Uniqueness and L∞-stability of the Prandtl-Ishlinskii Hysteresis and Creep Compensator , 2008, Eur. J. Control.

[15]  C. Newcomb,et al.  Improving the linearity of piezoelectric ceramic actuators , 1982 .

[16]  A. Visintin Differential models of hysteresis , 1994 .

[17]  Klaus Kuhnen,et al.  Modeling, Identification and Compensation of Complex Hysteretic Nonlinearities: A Modified Prandtl - Ishlinskii Approach , 2003, Eur. J. Control.

[18]  Klaus Kuhnen,et al.  Modelling, Identification, and Compensation of Complex Hysteretic and log(t)-Type Creep Nonlinearities , 2005, Control. Intell. Syst..

[19]  Andreas Kugi,et al.  Flatness-based tracking control of a piezoactuated Euler–Bernoulli beam with non-collocated output feedback: theory and experiments , 2008, Int. J. Control.

[20]  Hartmut Janocha,et al.  Adaptronics and Smart Structures: Basics, Materials, Design, and Applications , 2007 .