Fast quantum computation at arbitrarily low energy

One version of the energy-time uncertainty principle states that the minimum time $T_{\perp}$ for a quantum system to evolve from a given state to any orthogonal state is $h/(4 \Delta E)$ where $\Delta E$ is the energy uncertainty. A related bound called the Margolus-Levitin theorem states that $T_{\perp} \geq h/(2 E)$ where E is the expectation value of energy and the ground energy is taken to be zero. Many subsequent works have interpreted $T_{\perp}$ as defining a minimal time for an elementary computational operation and correspondingly a fundamental limit on clock speed determined by a system's energy. Here we present local time-independent Hamiltonians in which computational clock speed becomes arbitrarily large relative to E and $\Delta E$ as the number of computational steps goes to infinity. We argue that energy considerations alone are not sufficient to obtain an upper bound on computational speed, and that additional physical assumptions such as limits to information density and information transmission speed are necessary to obtain such a bound.

[1]  Thomas M. Cover,et al.  Enumerative source encoding , 1973, IEEE Trans. Inf. Theory.

[2]  J. Bekenstein Black Holes and Entropy , 1973, Jacob Bekenstein.

[3]  Jozef B Uffink The rate of evolution of a quantum state , 1993 .

[4]  S. Hsu Physical limits on information processing , 2006, hep-th/0607082.

[5]  S. Lloyd,et al.  Quantum limits to dynamical evolution , 2002, quant-ph/0210197.

[6]  Daniel A. Roberts,et al.  Holographic Complexity Equals Bulk Action? , 2016, Physical review letters.

[7]  Michael P. Frank,et al.  The physical limits of computing , 2002, Computing in Science & Engineering.

[8]  John Preskill,et al.  Quantum computation of scattering in scalar quantum field theories , 2011, Quantum Inf. Comput..

[9]  S. Lloyd Ultimate physical limits to computation , 1999, Nature.

[10]  Norman Margolus Looking at Nature as a Computer , 2003 .

[11]  Daniel A. Roberts,et al.  Complexity, action, and black holes , 2015, 1512.04993.

[12]  J. Bekenstein Universal upper bound on the entropy-to-energy ratio for bounded systems , 1981, Jacob Bekenstein.

[13]  Daniel Nagaj 2 1 N ov 2 01 1 Universal 2-local Hamiltonian Quantum Computing , 2011 .

[14]  Seth Lloyd,et al.  Adiabatic quantum computation is equivalent to standard quantum computation , 2004, 45th Annual IEEE Symposium on Foundations of Computer Science.

[15]  Y. Jack Ng,et al.  Spacetime Foam: From Entropy and Holography to Infinite Statistics and Nonlocality , 2008, Entropy.

[16]  Lev B. Levitin,et al.  Physical limitations of rate, depth, and minimum energy in information processing , 1982 .

[17]  Igor L. Markov,et al.  Limits on fundamental limits to computation , 2014, Nature.

[18]  Hans J. Bremermann,et al.  Optimization Through Evolution and Recombination , 2013 .

[19]  Aharonov,et al.  Geometry of quantum evolution. , 1990, Physical review letters.

[20]  Michael R. Frey,et al.  Quantum speed limits—primer, perspectives, and potential future directions , 2016, Quantum Inf. Process..

[21]  Michael P. Frank On the Interpretation of Energy as the Rate of Quantum Computation , 2005, Quantum Inf. Process..

[22]  Hans J. Bremermann,et al.  Minimum energy requirements of information transfer and computing , 1982 .

[23]  Lev Vaidman,et al.  Minimum time for the evolution to an orthogonal quantum state , 1992 .

[24]  R. Landauer,et al.  The Fundamental Physical Limits of Computation. , 1985 .

[25]  J. Bekenstein Energy Cost of Information Transfer , 1981 .

[26]  S. Hsu Information, Information Processing and Gravity , 2007, 0704.1154.

[27]  R. Bousso The Holographic principle , 2002, hep-th/0203101.

[28]  G. Milburn,et al.  Generalized uncertainty relations: Theory, examples, and Lorentz invariance , 1995, quant-ph/9507004.

[29]  G. N. Fleming A unitarity bound on the evolution of nonstationary states , 1973 .

[30]  Seth Lloyd,et al.  Black hole computers. , 2004, Scientific American.

[31]  I. Tamm,et al.  The Uncertainty Relation Between Energy and Time in Non-relativistic Quantum Mechanics , 1991 .

[32]  John Preskill,et al.  Quantum Algorithms for Quantum Field Theories , 2011, Science.

[33]  D. Aharonov,et al.  Fast-forwarding of Hamiltonians and exponentially precise measurements , 2016, Nature Communications.

[34]  R. Feynman Quantum mechanical computers , 1986 .

[35]  J. Unk The rate of evolution of a quantum state , 1993 .

[36]  N. Margolus,et al.  The maximum speed of dynamical evolution , 1997, quant-ph/9710043.

[37]  J. Preskill,et al.  Quantum Algorithms for Fermionic Quantum Field Theories , 2014, 1404.7115.

[38]  T. Toffoli,et al.  Fundamental limit on the rate of quantum dynamics: the unified bound is tight. , 2009, Physical review letters.

[39]  Sergio Boixo,et al.  Spectral Gap Amplification , 2011, SIAM J. Comput..

[40]  Mikhail N. Vyalyi,et al.  Classical and quantum codes , 2002 .

[41]  S. Lloyd Computational capacity of the universe. , 2001, Physical review letters.

[42]  Pfeifer How fast can a quantum state change with time? , 1993, Physical review letters.

[43]  L. Ballentine,et al.  Quantum Theory: Concepts and Methods , 1994 .