Fast quantum computation at arbitrarily low energy
暂无分享,去创建一个
[1] Thomas M. Cover,et al. Enumerative source encoding , 1973, IEEE Trans. Inf. Theory.
[2] J. Bekenstein. Black Holes and Entropy , 1973, Jacob Bekenstein.
[3] Jozef B Uffink. The rate of evolution of a quantum state , 1993 .
[4] S. Hsu. Physical limits on information processing , 2006, hep-th/0607082.
[5] S. Lloyd,et al. Quantum limits to dynamical evolution , 2002, quant-ph/0210197.
[6] Daniel A. Roberts,et al. Holographic Complexity Equals Bulk Action? , 2016, Physical review letters.
[7] Michael P. Frank,et al. The physical limits of computing , 2002, Computing in Science & Engineering.
[8] John Preskill,et al. Quantum computation of scattering in scalar quantum field theories , 2011, Quantum Inf. Comput..
[9] S. Lloyd. Ultimate physical limits to computation , 1999, Nature.
[10] Norman Margolus. Looking at Nature as a Computer , 2003 .
[11] Daniel A. Roberts,et al. Complexity, action, and black holes , 2015, 1512.04993.
[12] J. Bekenstein. Universal upper bound on the entropy-to-energy ratio for bounded systems , 1981, Jacob Bekenstein.
[13] Daniel Nagaj. 2 1 N ov 2 01 1 Universal 2-local Hamiltonian Quantum Computing , 2011 .
[14] Seth Lloyd,et al. Adiabatic quantum computation is equivalent to standard quantum computation , 2004, 45th Annual IEEE Symposium on Foundations of Computer Science.
[15] Y. Jack Ng,et al. Spacetime Foam: From Entropy and Holography to Infinite Statistics and Nonlocality , 2008, Entropy.
[16] Lev B. Levitin,et al. Physical limitations of rate, depth, and minimum energy in information processing , 1982 .
[17] Igor L. Markov,et al. Limits on fundamental limits to computation , 2014, Nature.
[18] Hans J. Bremermann,et al. Optimization Through Evolution and Recombination , 2013 .
[19] Aharonov,et al. Geometry of quantum evolution. , 1990, Physical review letters.
[20] Michael R. Frey,et al. Quantum speed limits—primer, perspectives, and potential future directions , 2016, Quantum Inf. Process..
[21] Michael P. Frank. On the Interpretation of Energy as the Rate of Quantum Computation , 2005, Quantum Inf. Process..
[22] Hans J. Bremermann,et al. Minimum energy requirements of information transfer and computing , 1982 .
[23] Lev Vaidman,et al. Minimum time for the evolution to an orthogonal quantum state , 1992 .
[24] R. Landauer,et al. The Fundamental Physical Limits of Computation. , 1985 .
[25] J. Bekenstein. Energy Cost of Information Transfer , 1981 .
[26] S. Hsu. Information, Information Processing and Gravity , 2007, 0704.1154.
[27] R. Bousso. The Holographic principle , 2002, hep-th/0203101.
[28] G. Milburn,et al. Generalized uncertainty relations: Theory, examples, and Lorentz invariance , 1995, quant-ph/9507004.
[29] G. N. Fleming. A unitarity bound on the evolution of nonstationary states , 1973 .
[30] Seth Lloyd,et al. Black hole computers. , 2004, Scientific American.
[31] I. Tamm,et al. The Uncertainty Relation Between Energy and Time in Non-relativistic Quantum Mechanics , 1991 .
[32] John Preskill,et al. Quantum Algorithms for Quantum Field Theories , 2011, Science.
[33] D. Aharonov,et al. Fast-forwarding of Hamiltonians and exponentially precise measurements , 2016, Nature Communications.
[34] R. Feynman. Quantum mechanical computers , 1986 .
[35] J. Unk. The rate of evolution of a quantum state , 1993 .
[36] N. Margolus,et al. The maximum speed of dynamical evolution , 1997, quant-ph/9710043.
[37] J. Preskill,et al. Quantum Algorithms for Fermionic Quantum Field Theories , 2014, 1404.7115.
[38] T. Toffoli,et al. Fundamental limit on the rate of quantum dynamics: the unified bound is tight. , 2009, Physical review letters.
[39] Sergio Boixo,et al. Spectral Gap Amplification , 2011, SIAM J. Comput..
[40] Mikhail N. Vyalyi,et al. Classical and quantum codes , 2002 .
[41] S. Lloyd. Computational capacity of the universe. , 2001, Physical review letters.
[42] Pfeifer. How fast can a quantum state change with time? , 1993, Physical review letters.
[43] L. Ballentine,et al. Quantum Theory: Concepts and Methods , 1994 .