Log-robust portfolio management with parameter ambiguity

We present a robust optimization approach to portfolio management under uncertainty when randomness is modeled using uncertainty sets for the continuously compounded rates of return, which empirical research argues are the true drivers of uncertainty, but the parameters needed to define the uncertainty sets, such as the drift and standard deviation, are not known precisely. Instead, a finite set of scenarios is available for the input data, obtained either using different time horizons or assumptions in the estimation process. Our objective is to maximize the worst-case portfolio value (over a set of allowable deviations of the uncertain parameters from their nominal values, using the worst-case nominal values among the possible scenarios) at the end of the time horizon in a one-period setting. Short sales are not allowed. We consider both the independent and correlated assets models. For the independent assets case, we derive a convex reformulation, albeit involving functions with singular Hessians. Because this slows computation times, we also provide lower and upper linear approximation problems and devise an algorithm that gives the decision maker a solution within a desired tolerance from optimality. For the correlated assets case, we suggest a tractable heuristic that uses insights derived in the independent assets case.

[1]  F. Black,et al.  The Pricing of Options and Corporate Liabilities , 1973, Journal of Political Economy.

[2]  M. Best,et al.  On the Sensitivity of Mean-Variance-Efficient Portfolios to Changes in Asset Means: Some Analytical and Computational Results , 1991 .

[3]  Mark Broadie,et al.  Computing efficient frontiers using estimated parameters , 1993, Ann. Oper. Res..

[4]  Dennis W. Jansen,et al.  On the Frequency of Large Stock Returns: Putting Booms and Busts into Perspective , 1989 .

[5]  Richard O. Michaud,et al.  Efficient Asset Management: A Practical Guide to Stock Portfolio Optimization and Asset Allocation , 1998 .

[6]  Melvyn Sim,et al.  The Price of Robustness , 2004, Oper. Res..

[7]  Laurent El Ghaoui,et al.  Robust Solutions to Uncertain Semidefinite Programs , 1998, SIAM J. Optim..

[8]  Giuseppe Carlo Calafiore,et al.  Parameter estimation with expected and residual-at-risk criteria , 2009, Syst. Control. Lett..

[9]  Sanjay Mehrotra,et al.  A branch-and-cut method for 0-1 mixed convex programming , 1999, Math. Program..

[10]  F. O. Hoffman,et al.  Propagation of uncertainty in risk assessments: the need to distinguish between uncertainty due to lack of knowledge and uncertainty due to variability. , 1994, Risk analysis : an official publication of the Society for Risk Analysis.

[11]  Raymond Kan,et al.  Optimal Portfolio Choice with Parameter Uncertainty , 2007, Journal of Financial and Quantitative Analysis.

[12]  Arkadi Nemirovski,et al.  Robust solutions of uncertain linear programs , 1999, Oper. Res. Lett..

[13]  Stephen J. Brown,et al.  Estimation risk and optimal portfolio choice , 1980 .

[14]  Aurélie Thiele,et al.  A log-robust optimization approach to portfolio management , 2011, OR Spectr..

[15]  Nikolaos V. Sahinidis,et al.  Optimization under uncertainty: state-of-the-art and opportunities , 2004, Comput. Chem. Eng..

[16]  A Ben Tal,et al.  ROBUST SOLUTIONS TO UNCERTAIN PROGRAMS , 1999 .

[17]  Michael W. Brandt Portfolio Choice Problems , 2010 .

[18]  W. Ziemba,et al.  The Effect of Errors in Means, Variances, and Covariances on Optimal Portfolio Choice , 1993 .

[19]  Reha H. Tütüncü,et al.  Robust Asset Allocation , 2004, Ann. Oper. Res..

[20]  Arkadi Nemirovski,et al.  Robust Convex Optimization , 1998, Math. Oper. Res..

[21]  Robert J. Vanderbei,et al.  Robust Optimization of Large-Scale Systems , 1995, Oper. Res..

[22]  F. Fabozzi Robust Portfolio Optimization and Management , 2007 .

[23]  A. Stuart,et al.  Portfolio Selection: Efficient Diversification of Investments , 1959 .

[24]  John N. Tsitsiklis,et al.  Regression methods for pricing complex American-style options , 2001, IEEE Trans. Neural Networks.

[25]  Constantine Caramanis,et al.  Theory and Applications of Robust Optimization , 2010, SIAM Rev..

[26]  E. Fama The Behavior of Stock-Market Prices , 1965 .

[27]  Laurent El Ghaoui,et al.  Robust Solutions to Least-Squares Problems with Uncertain Data , 1997, SIAM J. Matrix Anal. Appl..

[28]  J. Hull Options, Futures, and Other Derivatives , 1989 .

[29]  Allen L. Soyster,et al.  Technical Note - Convex Programming with Set-Inclusive Constraints and Applications to Inexact Linear Programming , 1973, Oper. Res..

[30]  Tom Smith,et al.  A Test for Multivariate Normality in Stock Returns , 1993 .

[31]  William T. Ziemba,et al.  Short Term Financial Planning under Uncertainty , 1982 .

[32]  John N. Tsitsiklis,et al.  Optimal stopping of Markov processes: Hilbert space theory, approximation algorithms, and an application to pricing high-dimensional financial derivatives , 1999, IEEE Trans. Autom. Control..

[33]  R. Cont Empirical properties of asset returns: stylized facts and statistical issues , 2001 .

[34]  Dimitris Bertsimas,et al.  Robust multiperiod portfolio management in the presence of transaction costs , 2008, Comput. Oper. Res..

[35]  Donald Goldfarb,et al.  Robust Portfolio Selection Problems , 2003, Math. Oper. Res..

[36]  William T. Ziemba,et al.  A Bank Asset and Liability Management Model , 1986, Oper. Res..

[37]  Arkadi Nemirovski,et al.  Robust solutions of Linear Programming problems contaminated with uncertain data , 2000, Math. Program..

[38]  Stephen P. Boyd,et al.  Extending Scope of Robust Optimization: Comprehensive Robust Counterparts of Uncertain Problems , 2006, Math. Program..

[39]  W. Ziemba,et al.  Worldwide asset and liability modeling , 1998 .

[40]  A. Ruszczynski,et al.  Optimization of Risk Measures , 2006 .

[41]  R. Rockafellar,et al.  Optimization of conditional value-at risk , 2000 .

[42]  A. Wald Statistical Decision Functions Which Minimize the Maximum Risk , 1945 .

[43]  Dessislava A. Pachamanova,et al.  Handling Parameter Uncertainty in Portfolio Risk Minimization , 2006 .

[44]  Stanley J. Kon Models of Stock Returns—A Comparison , 1984 .

[45]  Aurélie Thiele,et al.  Short sales in Log-robust portfolio management , 2011, Eur. J. Oper. Res..

[46]  Robert C. Blattberg,et al.  A Comparison of the Stable and Student Distributions as Statistical Models for Stock Prices: Reply , 1974 .

[47]  Bala Shetty,et al.  Financial planning via multi-stage stochastic optimization , 2004, Comput. Oper. Res..