On the Number of Graphs Without Large Cliques

In 1976 Erdos, Kleitman, and Rothschild determined asymptotically the logarithm of the number of graphs without a clique of a fixed size $\ell$. In this note we extend their result to the case of forbidden cliques of increasing size. More precisely we prove that for $\ell_n \le (\log n)^{1/4}/2$ there are $2^{(1-1/(\ell_n-1))n^2/2+o(n^2/\ell_n)} K_{\ell_n}$-free graphs of order $n$. Our proof is based on the recent hypergraph container theorems of Saxton and Thomason and Balogh, Morris, and Samotij, in combination with a theorem of Lovasz and Simonovits.

[1]  Noga Alon,et al.  The structure of almost all graphs in a hereditary property , 2009, J. Comb. Theory B.

[2]  L. Moser,et al.  AN EXTREMAL PROBLEM IN GRAPH THEORY , 2001 .

[3]  Miklós Simonovits,et al.  The number of graphs without forbidden subgraphs , 2004, J. Comb. Theory B.

[4]  Angelika Steger On the Evolution of Triangle-Free Graphs , 2005, Comb. Probab. Comput..

[5]  P. Erdos,et al.  A LIMIT THEOREM IN GRAPH THEORY , 1966 .

[6]  P. Erdös On an extremal problem in graph theory , 1970 .

[7]  W. T. Gowers,et al.  Lower bounds of tower type for Szemerédi's uniformity lemma , 1997 .

[8]  Wojciech Samotij,et al.  The number of Ks,t‐free graphs , 2011, J. Lond. Math. Soc..

[9]  Deryk Osthus,et al.  For Which Densities are Random Triangle-Free Graphs Almost Surely Bipartite? , 2003, Comb..

[10]  J. Balogh,et al.  Independent sets in hypergraphs , 2012, 1204.6530.

[11]  Hans Jürgen Prömel,et al.  On the asymptotic structure of sparse triangle free graphs , 1996, J. Graph Theory.

[12]  Ph. G. Kolaitis,et al.  _{+1}-free graphs: asymptotic structure and a 0-1 law , 1987 .

[13]  Vojtech Rödl,et al.  The asymptotic number of graphs not containing a fixed subgraph and a problem for hypergraphs having no exponent , 1986, Graphs Comb..

[14]  D. Saxton,et al.  Hypergraph containers , 2012, 1204.6595.

[15]  M. Simonovits,et al.  On the number of complete subgraphs of a graph II , 1983 .

[16]  P. Erdös On the structure of linear graphs , 1946 .

[17]  Miklós Simonovits,et al.  Supersaturated graphs and hypergraphs , 1983, Comb..

[18]  Béla Bollobás,et al.  The number of graphs with large forbidden subgraphs , 2010, Eur. J. Comb..

[19]  Hans Jürgen Prömel,et al.  The asymptotic number of graphs not containing a fixed color-critical subgraph , 1992, Comb..

[20]  alcun K. grafo ASYMPTOTIC ENUMERATION OF Kn-FREE GRAPHS , 2004 .