Na2Co3[Fe(CN)6]2: A promising cathode material for lithium-ion and sodium-ion batteries

Abstract A Prussian blue analogue, Na 2 Co 3 [Fe(CN) 6 ] 2 , has been fabricated by a facile co-precipitation method at room temperature as a potential cathode material for both lithium-ion and sodium-ion batteries. It found that the Na 2 Co 3 [Fe(CN) 6 ] 2 nanoparticles with a primary particle size of 30–40 nm have been synthesized, and exhibited an excellent electrochemical performance, including a long cycling behavior in lithium-ion batteries and a good rate performance in sodium-ion batteries. In lithium-ion batteries, the Na 2 Co 3 [Fe(CN) 6 ] 2 nanoparticles cathode can deliver an excellent cyclic performance with 73.0% retention of initial capacity after 50 cycles at 50 mA g −1 . Moreover, when Na 2 Co 3 [Fe(CN) 6 ] 2 is used as cathode material of sodium-ion batteries, it exhibits an outstanding rate performance exceeding 75.2% retention of initial capacity after 50 cycles at 200 mA g −1 . Therefore, the Na 2 Co 3 [Fe(CN) 6 ] 2 nanoparticles can be a potential cathode candidate for the application of lithium-ion and sodium-ion batteries due to its excellent electrochemical performance, easy preparation, low cost and environment benefits.

[1]  Zhichuan J. Xu,et al.  Recent developments in electrode materials for sodium-ion batteries , 2015 .

[2]  I. Uchida,et al.  Electrochemistry of polynuclear transition metal cyanides: Prussian blue and its analogues , 1986 .

[3]  Kingo Itaya,et al.  Spectroelectrochemistry and electrochemical preparation method of Prussian blue modified electrodes , 1982 .

[4]  Kingo Itaya,et al.  Electrochemistry of Prussian Blue Modified Electrodes: An Electrochemical Preparation Method , 1982 .

[5]  Kai Zhang,et al.  Recent Advances and Prospects of Cathode Materials for Sodium‐Ion Batteries , 2015, Advanced materials.

[6]  Gerbrand Ceder,et al.  Challenges for Na-ion Negative Electrodes , 2011 .

[7]  John B Goodenough,et al.  Prussian blue: a new framework of electrode materials for sodium batteries. , 2012, Chemical communications.

[8]  M. Verdaguer,et al.  A room-temperature organometallic magnet based on Prussian blue , 1995, Nature.

[9]  J. Long,et al.  Hydrogen storage in the dehydrated prussian blue analogues M3[Co(CN)6]2 (M = Mn, Fe, Co, Ni, Cu, Zn). , 2005, Journal of the American Chemical Society.

[10]  Dag L. Aksnes,et al.  Mesopelagic fish biomass and trophic efficiency of the open ocean , 2014 .

[11]  M. Chi,et al.  Self-organized amorphous TiO2 nanotube arrays on porous Ti foam for rechargeable lithium and sodium ion batteries , 2013 .

[12]  S. Jiao,et al.  Straightforward Approach toward SiO2 Nanospheres and Their Superior Lithium Storage Performance , 2014 .

[13]  F Ricci,et al.  Sensor and biosensor preparation, optimisation and applications of Prussian Blue modified electrodes. , 2005, Biosensors & bioelectronics.

[14]  Yi Cui,et al.  Copper hexacyanoferrate battery electrodes with long cycle life and high power. , 2011, Nature communications.

[15]  Yasuo Takeda,et al.  Lithium intercalation behavior into iron cyanide complex as positive electrode of lithium secondary battery , 1999 .

[16]  Liquan Chen,et al.  Room-temperature stationary sodium-ion batteries for large-scale electric energy storage , 2013 .

[17]  L. Nazar,et al.  Sodium and sodium-ion energy storage batteries , 2012 .

[18]  Yan Yu,et al.  Single-layered ultrasmall nanoplates of MoS2 embedded in carbon nanofibers with excellent electrochemical performance for lithium and sodium storage. , 2014, Angewandte Chemie.

[19]  Fe4[Fe(CN)6]3: a cathode material for sodium-ion batteries , 2014 .

[20]  Y. Moritomo,et al.  Redox Reactions in Prussian Blue Analogue Films with Fast Na+ Intercalation , 2013 .

[21]  J. Long,et al.  Molecular Prussian Blue analogues: synthesis and structure of cubic Cr4Co4(CN)12 and Co8(CN)12 clusters , 1998 .

[22]  Donghan Kim,et al.  Sodium‐Ion Batteries , 2013 .

[23]  Yi Cui,et al.  A high-rate and long cycle life aqueous electrolyte battery for grid-scale energy storage , 2012, Nature Communications.

[24]  Khalil Amine,et al.  A new class of lithium and sodium rechargeable batteries based on selenium and selenium-sulfur as a positive electrode. , 2012, Journal of the American Chemical Society.

[25]  D. Schwarzenbach,et al.  The crystal structure of Prussian Blue: Fe4[Fe(CN)6]3.xH2O , 1977 .

[26]  P. Bruce,et al.  Nanomaterials for rechargeable lithium batteries. , 2008, Angewandte Chemie.

[27]  Yi Cui,et al.  Full open-framework batteries for stationary energy storage , 2014, Nature Communications.

[28]  Teófilo Rojo,et al.  Update on Na-based battery materials. A growing research path , 2013 .

[29]  Dong-Hwa Seo,et al.  New iron-based mixed-polyanion cathodes for lithium and sodium rechargeable batteries: combined first principles calculations and experimental study. , 2012, Journal of the American Chemical Society.

[30]  H. Sakaebe,et al.  Lithium intercalation behavior of iron cyanometallates , 1999 .

[31]  Y. Moritomo,et al.  Synchrotron-Radiation X-Ray Investigation of Li+/Na+ Intercalation into Prussian Blue Analogues , 2013 .

[32]  Kingo Itaya,et al.  Catalysis of the reduction of molecular oxygen to water at Prussian blue modified electrodes , 1984 .