Osmotic regulation in the marine alga,Codium decorticatum

SummaryCodium decorticatum regulates its internal ionic composition and osmotic pressure in response to changes in external salinity. Over a salinity range of 23 to 37‰ (675 to 1120 mosmol/kg)Codium maintains a constant turgor pressure of 95 mosmol/kg (2.3 atm), observed as a constant difference between internal and external osmotic pressures. The changes in internal osmotic pressure are due to changes in intracellular inorganic ions. At 30‰ salinity the major intracellular ions are present in the following concentrations (mmol/kg cell H2O): K+, 295; Na+, 255; Cl−, 450. At different salinities intracellular ion concentrations remain in constant proportion to the external ion concentrations, and thus the equilibrium potentials are approximately constant. The potential difference between the vacuole and seawater (−76 mV), which is predominantly a K+ diffusion potential, is also constant with changing salinity. Comparison of the equilibrium potentials with the vacuole potential suggests that Cl− is actively absorbed and Na+ actively extruded, whereas K+ may be passively distributed between the vacuole and seawater. Turgor pressure does not change with environmental hydrostatic pressure, and increasing the external osmotic pressure with raffinose elicits a response similar to that obtained by increasing the salinity. These two results suggest that the stimulus for turgor regulation is a change in turgor pressure rather than a change in internal hydrostatic pressure or ion concentrations.

[1]  W. Cram Negative Feedback Regulation of Transport in Cells. The Maintenance of Turgor, Volume and Nutrient Supply , 1976 .

[2]  L. Jaffe,et al.  Ionic concentrations in developingPelvetia eggs , 1972 .

[3]  D. Hastings,et al.  Ionic relations and the regulation of turgor pressure in the marine alga,Valonia macrophysa , 1976, The Journal of Membrane Biology.

[4]  R. Nuccitelli,et al.  The ionic components of the current pulses generated by developing fucoid eggs. , 1976, Developmental biology.

[5]  R. Eisenberg,et al.  Capacitance of the Surface and Transverse Tubular Membrane of Frog Sartorius Muscle Fibers , 1969, The Journal of general physiology.

[6]  A. R. Mcintyre,et al.  Inorganic Phosphates and Phosphate Esters in Tissue Extracts , 1951 .

[7]  Mary A. Bisson,et al.  Osmotic regulation in the marine alga,Codium decorticatum , 1977, The Journal of Membrane Biology.

[8]  M. Tazawa,et al.  Osmotic and ionic regulation in Nitella , 1974 .

[9]  H. Kesseler Zellsaftgewinnung, AFS (apparent free space) und Vakuolenkonzentration der osmotisch wichtigsten mineralischen Bestandteile einiger Helgoländer Meeresalgen , 1964, Helgoländer wissenschaftliche Meeresuntersuchungen.

[10]  U. Zimmermann,et al.  The pressure-dependence of the hydraulic conductivity, the membrane resistance and membrane potential during turgor pressure regulation inValonia utricularis , 2005, The Journal of Membrane Biology.

[11]  J. Gutknecht,et al.  Ion transport studies and determination of the cell wall elastic modulus in the marine alga Halicystis parvula , 1976, The Journal of general physiology.

[12]  D. Hastings,et al.  Turgor Pressure Regulation: Modulation of Active Potassium Transport by Hydrostatic Pressure Gradients , 1974 .

[13]  J. Dainty Ion Transport and Electrical Potentials in Plant Cells , 1962 .

[14]  A. Katchalsky,et al.  Thermodynamic analysis of the permeability of biological membranes to non-electrolytes. , 1958, Biochimica et biophysica acta.

[15]  M. Pitman,et al.  Sodium and Potassium Transport in the Marine Alga Chaetomorpha Darwinii , 1966 .

[16]  U. Zimmermann,et al.  Effects of potassium concentration and osmotic pressure of sea water on the cell-turgor pressure of Chaetomorpha linum , 1971, Marine Biology.

[17]  H. Barnes Some Tables for the Ionic Composition of Sea Water , 1954 .

[18]  P. Ray,et al.  Role of Turgor in Plant Cell Growth , 1972, Nature.

[19]  N. A. Walker,et al.  The Physiology of Giant Algal Cells , 1975 .

[20]  E. Macrobbie,et al.  The active transport of ions in plant cells , 1970, Quarterly Reviews of Biophysics.

[21]  Ian Morris,et al.  An Introduction To The Algae. , 1971 .

[22]  U. Zimmermann,et al.  Zellturgor und selektiver Ionentransport bei Chaetomorpha linum / Cell Turgor Pressure and Selective Ion Transport of Chaetomorpha linum , 1971 .

[23]  J. Gutknecht Salt Transport in Valonia: Inhibition of Potassium Uptake by Small Hydrostatic Pressures , 1968, Science.

[24]  R. Nuccitelli,et al.  Current pulses involving chloride and potassium efflux relieve excess pressure in Pelvetia embryos , 2004, Planta.

[25]  R. Hageman,et al.  Use of a dissimilatory nitrate reductase from Escherichia coli and formate as a reductive system for nitrate assays , 1971 .

[26]  H. Kesseler Die Bedeutung einiger anorganischer Komponenten des Seewassers für die Turgorregulation vonChaetomorpha linum (Cladophorales) , 1964, Helgoländer wissenschaftliche Meeresuntersuchungen.