Automated analysis of mitochondrial dimensions in mesenchymal stem cells: Current methods and future perspectives

[1]  J. Porter,et al.  Microfluidic technologies for ex vivo tissue biopsies: A review , 2022, Organs-on-a-Chip.

[2]  Long-Sheng Lu,et al.  Single Cell Effects of Photobiomodulation on Mitochondrial Membrane Potential and Reactive Oxygen Species Production in Human Adipose Mesenchymal Stem Cells , 2022, Cells.

[3]  E. Rainero,et al.  The Interplay between Cell-Extracellular Matrix Interaction and Mitochondria Dynamics in Cancer , 2022, Cancers.

[4]  Yan Jin,et al.  Time-efficient fabrication method for 3D-printed microfluidic devices , 2022, Scientific Reports.

[5]  A. Varenne,et al.  Stereolithography based 3D-Printed Microfluidic Device with integrated Electrochemical Detection , 2022, Electrochimica Acta.

[6]  S. Ghorbani,et al.  Microfluidic-Based Droplets for Advanced Regenerative Medicine: Current Challenges and Future Trends , 2021, Biosensors.

[7]  Kristina Xiao Liang,et al.  Flow Cytometric Analysis of Multiple Mitochondrial Parameters in Human Induced Pluripotent Stem Cells and Their Neural and Glial Derivatives , 2021, Journal of Visualized Experiments.

[8]  A. Białas,et al.  The Role of Interaction between Mitochondria and the Extracellular Matrix in the Development of Idiopathic Pulmonary Fibrosis , 2021, Oxidative medicine and cellular longevity.

[9]  R. Araya-Maturana,et al.  Extracellular Matrix Signals as Drivers of Mitochondrial Bioenergetics and Metabolic Plasticity of Cancer Cells During Metastasis , 2021, Frontiers in Cell and Developmental Biology.

[10]  Jiubin Tan,et al.  Deep learning enables confocal laser-scanning microscopy with enhanced resolution. , 2021, Optics letters.

[11]  H. Clausen‐Schaumann,et al.  Mitochondrial respiratory chain function promotes extracellular matrix integrity in cartilage , 2021, The Journal of biological chemistry.

[12]  P. Ertl,et al.  Dependence of mitochondrial function on the filamentous actin cytoskeleton in cultured mesenchymal stem cells treated with cytochalasin B. , 2021, Journal of bioscience and bioengineering.

[13]  F. Buss,et al.  Motor proteins at the mitochondria–cytoskeleton interface , 2021, Journal of cell science.

[14]  T. Sikanen,et al.  The material-enabled oxygen control in thiol-ene microfluidic channels and its feasibility for subcellular drug metabolism assays under hypoxia in vitro. , 2021, Lab on a chip.

[15]  Swapna A. Jaywant,et al.  Study of Microchannels Fabricated Using Desktop Fused Deposition Modeling Systems , 2020, Micromachines.

[16]  J. O. Lee,et al.  Mitochondrial Dynamics in Placenta-Derived Mesenchymal Stem Cells Regulate the Invasion Activity of Trophoblast , 2020, International journal of molecular sciences.

[17]  L. Qian,et al.  Direct ink writing combined with metal-assisted chemical etching of microchannels for the microfluidic system applications , 2020 .

[18]  A. Popov,et al.  Accurate and rapid 3D printing of microfluidic devices using wavelength selection on a DLP printer. , 2020, Lab on a chip.

[19]  F. Kotz,et al.  Fused Deposition Modeling of Microfluidic Chips in Polymethylmethacrylate , 2020, Micromachines.

[20]  Huayi Suo,et al.  Protective role of mitoquinone against impaired mitochondrial homeostasis in metabolic syndrome , 2020, Critical reviews in food science and nutrition.

[21]  N. Mongan,et al.  Immunosuppressive properties of cytochalasin B-induced membrane vesicles of mesenchymal stem cells: comparing with extracellular vesicles derived from mesenchymal stem cells , 2020, Scientific Reports.

[22]  L. Moro Mitochondria at the Crossroads of Physiology and Pathology , 2020, Journal of clinical medicine.

[23]  Lucia-Doina Popov Mitochondrial biogenesis: An update , 2020, Journal of cellular and molecular medicine.

[24]  Reza Afkhami,et al.  Mikrofluidisches Microarray für die Einzelzellanalyse , 2020, Elektrotech. Informationstechnik.

[25]  Luke A Schwerdtfeger,et al.  A microfluidic organotypic device for culture of mammalian intestines ex vivo , 2020 .

[26]  S. Hannani,et al.  Microfluidic technologies to engineer mesenchymal stem cell aggregates—applications and benefits , 2020, Biophysical Reviews.

[27]  Charles N. Baroud,et al.  Mapping the structure and biological functions within mesenchymal bodies using microfluidics , 2020, Science Advances.

[28]  Kanika Jain,et al.  Role of Platelet Mitochondria: Life in a Nucleus-Free Zone , 2019, Front. Cardiovasc. Med..

[29]  Y. Toh,et al.  Fabrication of integrated microfluidic devices by direct ink writing (DIW) 3D printing , 2019, Sensors and Actuators B: Chemical.

[30]  J. Markworth,et al.  Circulatory miRNA biomarkers of metabolic syndrome , 2019, Acta Diabetologica.

[31]  F. Djouad,et al.  Mesenchymal stem cell repression of Th17 cells is triggered by mitochondrial transfer , 2019, Stem Cell Research & Therapy.

[32]  Junhui Chen,et al.  Mesenchymal stem cells and their mitochondrial transfer: a double-edged sword , 2019, Bioscience reports.

[33]  Y. Yaniv,et al.  Real time mitochondrial dimension measurements , 2019, Journal of biological methods.

[34]  Qianqian Sun,et al.  Dynamic fluorescent imaging analysis of mitochondrial redox in single cells with a microfluidic device. , 2019, Biosensors & bioelectronics.

[35]  Aneal Khan,et al.  Mesenchymal Stem Cells Shift Mitochondrial Dynamics and Enhance Oxidative Phosphorylation in Recipient Cells , 2018, Front. Physiol..

[36]  A. Agrawal,et al.  Human tissue-specific MSCs demonstrate differential mitochondria transfer abilities that may determine their regenerative abilities , 2018, Stem Cell Research & Therapy.

[37]  L. Lerman,et al.  Metabolic Syndrome Modulates Protein Import into the Mitochondria of Porcine Mesenchymal Stem Cells , 2018, Stem Cell Reviews and Reports.

[38]  Carlos Gonzalez-Cabezas,et al.  A Sensitive Thresholding Method for Confocal Laser Scanning Microscope Image Stacks of Microbial Biofilms , 2018, Scientific Reports.

[39]  Nektarios Tavernarakis,et al.  Mechanisms of mitophagy in cellular homeostasis, physiology and pathology , 2018, Nature Cell Biology.

[40]  A. Frost,et al.  FDM 3D Printing of High-Pressure, Heat-Resistant, Transparent Microfluidic Devices. , 2018, Analytical chemistry.

[41]  Gianluca Percoco,et al.  Extrusion-Based 3D Printing of Microfluidic Devices for Chemical and Biomedical Applications: A Topical Review , 2018, Micromachines.

[42]  J. Prudent,et al.  Mitochondrial dynamics: overview of molecular mechanisms , 2018, Essays in biochemistry.

[43]  P. Ertl,et al.  Every Breath You Take: Non-invasive Real-Time Oxygen Biosensing in Two- and Three-Dimensional Microfluidic Cell Models , 2018, Front. Physiol..

[44]  Charles S Henry,et al.  Powering ex vivo tissue models in microfluidic systems. , 2018, Lab on a chip.

[45]  A. Agrawal,et al.  Regenerative abilities of mesenchymal stem cells through mitochondrial transfer , 2018, Journal of Biomedical Science.

[46]  F. Kotz,et al.  Highly Fluorinated Methacrylates for Optical 3D Printing of Microfluidic Devices , 2018, Micromachines.

[47]  Albert Folch,et al.  Digital Manufacturing of Selective Porous Barriers in Microchannels Using Multi-Material Stereolithography , 2018, Micromachines.

[48]  H. Koo,et al.  Enhanced Immunosuppressive Properties of Human Mesenchymal Stem Cells Primed by Interferon-γ , 2018, EBioMedicine.

[49]  D. Turnbull,et al.  Mitochondrial Nanotunnels , 2017, Trends in cell biology.

[50]  A. Woolley,et al.  Custom 3D printer and resin for 18 μm × 20 μm microfluidic flow channels. , 2017, Lab on a chip.

[51]  Andrew J. F. Valente,et al.  A simple ImageJ macro tool for analyzing mitochondrial network morphology in mammalian cell culture. , 2017, Acta histochemica.

[52]  Y. Yoon,et al.  Mitochondrial fission and fusion. , 2016, Biochemical Society transactions.

[53]  K. Chan,et al.  Immunomodulation by mesenchymal stem cells: Interplay between mesenchymal stem cells and regulatory lymphocytes , 2016, World journal of stem cells.

[54]  Savas Tasoglu,et al.  3D-printed microfluidic devices , 2016, Biofabrication.

[55]  Fan Yang,et al.  A new method for quantifying mitochondrial axonal transport , 2016, Protein & Cell.

[56]  Jane Y. Wu,et al.  A new method for quantifying mitochondrial axonal transport , 2016, Protein & Cell.

[57]  Sidra Waheed,et al.  3D printed microfluidic devices: enablers and barriers. , 2016, Lab on a chip.

[58]  Albert Folch,et al.  The upcoming 3D-printing revolution in microfluidics. , 2016, Lab on a chip.

[59]  Jan Vanfleteren,et al.  Real-time monitoring of metabolic function in liver-on-chip microdevices tracks the dynamics of mitochondrial dysfunction , 2016, Proceedings of the National Academy of Sciences.

[60]  Prashant Mishra,et al.  Metabolic regulation of mitochondrial dynamics , 2016, The Journal of cell biology.

[61]  L. Scorrano,et al.  Mito-Morphosis: Mitochondrial Fusion, Fission, and Cristae Remodeling as Key Mediators of Cellular Function. , 2016, Annual review of physiology.

[62]  K. Nayak,et al.  Computational fluid dynamics simulations of blood flow regularized by 3D phase contrast MRI , 2015, Biomedical engineering online.

[63]  E. Vinogradova,et al.  Mitochondrial fission and fusion , 2015, Biochemistry (Moscow).

[64]  M. Meyer-Hermann,et al.  Structural Heterogeneity of Mitochondria Induced by the Microtubule Cytoskeleton , 2015, Scientific Reports.

[65]  Sriram Subramaniam,et al.  Mitochondrial reticulum for cellular energy distribution in muscle , 2015, Nature.

[66]  Joachim D. Mueller,et al.  Quantitative Brightness Analysis of Fluorescence Intensity Fluctuations in E. Coli , 2015, PloS one.

[67]  F. Pallardó,et al.  Mitochondrial biogenesis in health and disease. Molecular and therapeutic approaches. , 2014, Current pharmaceutical design.

[68]  J. Lorens,et al.  Automated Quantification and Integrative Analysis of 2D and 3D Mitochondrial Shape and Network Properties , 2014, PloS one.

[69]  Marcus F. Oliveira,et al.  Mitochondria: biological roles in platelet physiology and pathology. , 2014, The international journal of biochemistry & cell biology.

[70]  K. Neeves,et al.  The use of microfluidics in hemostasis: clinical diagnostics and biomimetic models of vascular injury , 2013, Current opinion in hematology.

[71]  U. Jenal,et al.  Role of Autofluorescence in Flow Cytometric Analysis of Escherichia coli Treated with Bactericidal Antibiotics , 2013, Journal of bacteriology.

[72]  D. Chan,et al.  Fis1, Mff, MiD49, and MiD51 mediate Drp1 recruitment in mitochondrial fission , 2013, Molecular biology of the cell.

[73]  Wenming Liu,et al.  Construction of oxygen and chemical concentration gradients in a single microfluidic device for studying tumor cell-drug interactions in a dynamic hypoxia microenvironment. , 2013, Lab on a chip.

[74]  A. M. van der Bliek,et al.  Mitochondrial Fission, Fusion, and Stress , 2012, Science.

[75]  Johannes E. Schindelin,et al.  Fiji: an open-source platform for biological-image analysis , 2012, Nature Methods.

[76]  C. Martel,et al.  Mitochondrial Roles and Cytoprotection in Chronic Liver Injury , 2012, Biochemistry research international.

[77]  M. Aller,et al.  Immunosuppressive properties of mesenchymal stem cells: advances and applications. , 2012, Current molecular medicine.

[78]  Xinnan Wang,et al.  PINK1 and Parkin Target Miro for Phosphorylation and Degradation to Arrest Mitochondrial Motility , 2011, Cell.

[79]  Chien-Chung Peng,et al.  Generation of oxygen gradients in microfluidic devices for cell culture using spatially confined chemical reactions. , 2011, Lab on a chip.

[80]  J. Holloszy Regulation of mitochondrial biogenesis and GLUT4 expression by exercise. , 2011, Comprehensive Physiology.

[81]  R. Rodenburg,et al.  Depletion of PINK1 affects mitochondrial metabolism, calcium homeostasis and energy maintenance , 2011, Journal of Cell Science.

[82]  J. Enríquez,et al.  Tissue-specific differences in mitochondrial activity and biogenesis. , 2011, Mitochondrion.

[83]  Benedikt Westermann,et al.  Mitochondrial fusion and fission in cell life and death , 2010, Nature Reviews Molecular Cell Biology.

[84]  David T Eddington,et al.  Oxygen gradients for open well cellular cultures via microfluidic substrates. , 2010, Lab on a chip.

[85]  G. Shulman,et al.  Regulation of mitochondrial biogenesis. , 2010, Essays in biochemistry.

[86]  George Perry,et al.  Impaired Balance of Mitochondrial Fission and Fusion in Alzheimer's Disease , 2009, The Journal of Neuroscience.

[87]  Paolo Bernardi,et al.  Pathophysiology of mitochondrial volume homeostasis: potassium transport and permeability transition. , 2009, Biochimica et biophysica acta.

[88]  Luke P. Lee,et al.  Innovations in optical microfluidic technologies for point-of-care diagnostics. , 2008, Lab on a chip.

[89]  Min Wu,et al.  Fission and selective fusion govern mitochondrial segregation and elimination by autophagy , 2008, The EMBO journal.

[90]  M. Hoth,et al.  T cell activation requires mitochondrial translocation to the immunological synapse , 2007, Proceedings of the National Academy of Sciences.

[91]  Robert A. Harris,et al.  Tissue heterogeneity of the mammalian mitochondrial proteome. , 2007, American journal of physiology. Cell physiology.

[92]  A. Kaasik,et al.  Regulation of mitochondrial matrix volume. , 2007, American journal of physiology. Cell physiology.

[93]  H. McBride,et al.  Mitochondria: More Than Just a Powerhouse , 2006, Current Biology.

[94]  B. Spiegelman,et al.  Peroxisome proliferator-activated receptor gamma coactivator 1 coactivators, energy homeostasis, and metabolism. , 2006, Endocrine reviews.

[95]  S. Rodríguez-Enríquez,et al.  Tracker Dyes to Probe Mitochondrial Autophagy (Mitophagy) in Rat Hepatocytes , 2006, Autophagy.

[96]  U. Seydel,et al.  Recording of mitochondrial transmembrane potential and volume in cultured rat osteoclasts by confocal laser scanning microscopy , 1997, The Histochemical Journal.

[97]  A. Halestrap,et al.  Matrix volume measurements challenge the existence of diazoxide/glibencamide‐sensitive KATP channels in rat mitochondria , 2003, The Journal of physiology.

[98]  E. Wintour,et al.  Developmental regulation of erythropoietin and erythropoiesis. , 1997, American journal of physiology. Regulatory, integrative and comparative physiology.

[99]  E. Wintour,et al.  Developmental regulation of erythropoietin and erythropoiesis. , 1997, The American journal of physiology.

[100]  T. Mar Measurement of mitochondrial volume independent of refractive index by light scattering. , 1981, Journal of biochemical and biophysical methods.