Reduced dimensionality theory of quantum reactive scattering

[1]  T. Carrington,et al.  Reaction surface Hamiltonian for the dynamics of reactions in polyatomic systems , 1984 .

[2]  J. Bowman,et al.  Test of the adiabatic approximation for vibrational energies of H2O , 1984 .

[3]  J. Bowman,et al.  Reaction dynamics for O(3P)+H2 and D2. IV. Reduced dimensionality quantum and quasiclassical rate constants with an adiabatic incorporation of the bending motion , 1984 .

[4]  G. Schatz The origin of cross section thresholds in H+H2: Why quantum dynamics appears to be more vibrationally adiabatic than classical dynamics , 1983 .

[5]  R. T. Skodje,et al.  Small‐curvature adiabatic approximation for reaction‐path reduced‐dimensionality effective Hamiltonian , 1983 .

[6]  G. S. Ezra The adiabatic approximation for coupled oscillators , 1983 .

[7]  J. Bowman,et al.  Reduced dimensionality quantum rate constants for the D+H2(v=0) and D+H2(v=1) reactions on the LSTH surface , 1983 .

[8]  W. Miller,et al.  System‐bath decomposition of the reaction path Hamiltonian. II. Rotationally inelastic reactive scattering of H+H2 in three dimensions , 1983 .

[9]  K. Westberg,et al.  Chemical Kinetic Data Sheets for High‐Temperature Chemical Reactions , 1983 .

[10]  D. Kouri,et al.  Quantum mechanical treatment of the F+D2→DF+D reaction , 1983 .

[11]  J. Bowman,et al.  Reduced dimensionality quantum calculations of integral cross sections for H + H2(υ = 1) → H2(υ′ = 0), H2(υ′ = 1) + H , 1983 .

[12]  G. Schatz The quantum dynamics of H + H2(ν = 1): A coupled states study of cross sections and rate constants , 1983 .

[13]  H. Kono,et al.  APPLICATION OF THE ADIABATIC APPROXIMATION TO COUPLED OSCILLATORS , 1982 .

[14]  G. Glass,et al.  The rate of the reaction D+H2(v = 1)→DH+H , 1982 .

[15]  R. Wyatt,et al.  Semiclassical prediction of resonance energies in three‐dimensional reactive collisions , 1982 .

[16]  W. Miller,et al.  SYSTEM-BATH DECOMPOSITION OF THE REACTION PATH HAMILTONIAN FOR POLYATOMIC SCATTERING; QUANTUM PERTURBATIVE TREATMENT , 1982 .

[17]  J. Bowman,et al.  Approximate quantum differential cross section for the atomic fluorine + hydrogen deuteride .fwdarw. hydrogen fluoride + atomic deuterium and deuterium fluoride + atomic hydrogen reactions , 1982 .

[18]  M. Shapiro,et al.  Quantum stochasticity and unimolecular decay , 1982 .

[19]  G. Schatz,et al.  A comparative study of the reaction dynamics of several potential energy surfaces for O(3P)+H2 → OH+H. II. Collinear exact quantum and quasiclassical reaction probabilities , 1982 .

[20]  J. Bowman,et al.  New approximate quantum cross sections for the H+H2 reaction , 1981 .

[21]  J. Kaye,et al.  Collision-lifetime matrix analysis of the first resonance in the collinear fluorine + hydrogen reaction and its isotopically substituted analogs , 1981 .

[22]  E. Pollak A classical determination of vibrationally adiabatic barriers and wells of a collinear potential energy surface , 1981 .

[23]  J. Bowman,et al.  Quantum and classical dynamics of a coupled double well oscillator , 1981 .

[24]  B. C. Garrett,et al.  Variational Transition State Theory , 1980 .

[25]  R. Zare,et al.  State‐to‐state reaction dynamics , 1980 .

[26]  D. Kouri,et al.  Integral cross sections for the reaction F + H2, (vi = 0) → HF(vf = 0,1,2,3) + H: a quantum-mechanical calculation within the infinite order sudden approximation , 1980 .

[27]  J. Light,et al.  Reactive Molecular Collisions , 1980 .

[28]  J. Bowman,et al.  Sudden rotation reactive scattering: Theory and application to 3‐D H+H2 , 1980 .

[29]  E. Pollak,et al.  Classical transition state theory: A lower bound to the reaction probability , 1980 .

[30]  H. R. Mayne Quasiclassical trajectory calculations for H + H2 (ν = 1) on a new potential energy surface , 1979 .

[31]  B. C. Garrett,et al.  Reliable ab initio calculation of a chemical reaction rate and a kinetic isotope effect: H + H(2) and H + H(2). , 1979, Proceedings of the National Academy of Sciences of the United States of America.

[32]  J. Wolfrum,et al.  Reactions of Molecules in Defined Vibrational States VII. Absolute Rate Determination for the Reaction of D‐Atoms with Vibrationally Excited H2‐Molecules , 1979 .

[33]  D. Kouri,et al.  Infinite order sudden approximation for reactive scattering. I. Basic l‐labeled formulation , 1979 .

[34]  J. Bowman,et al.  Sudden rotation calculations of the H + H2(υ = 1, f = 0) reaction , 1979 .

[35]  William A. Lester,et al.  Trajectory studies of O+H2 reactions on fitted abinitio surfaces. II. Singlet case , 1979 .

[36]  R. Wyatt,et al.  Quantum resonance structure in the three-dimensional F + H2 reaction , 1979 .

[37]  B. C. Garrett,et al.  Generalized transition state theory. Quantum effects for collinear reactions of hydrogen molecules and isotopically substituted hydrogen molecules , 1979 .

[38]  J. Connor Reactive molecular collision calculations , 1979 .

[39]  A. Kuppermann An exact quantum mechanical transition state theory. 1. An overview , 1979 .

[40]  E. B. Gordon,et al.  Measurement of rate constants of hydrogen atom exchange with vibrationally excited H2, HD, and D2 molecules , 1978 .

[41]  J. Light,et al.  Accurate H3 dynamics on an accurate H3 potential surface , 1978 .

[42]  Bin Liu,et al.  An accurate three‐dimensional potential energy surface for H3 , 1978 .

[43]  C. Horowitz,et al.  Functional representation of Liu and Siegbahn’s accurate ab initio potential energy calculations for H+H2 , 1978 .

[44]  G. Light The effect of vibrational excitation on the reaction of O(3P) with H2 and the distribution of vibrational energy in the product OH , 1978 .

[45]  Michael E. Coltrin,et al.  A new tunneling path for reactions such as H+H2→H2+H , 1977 .

[46]  J. Ross,et al.  Franck-Condon factors in studies of dynamics of chemical reactions. II. Vibration-rotation distributions in atom-diatom reactions , 1977 .

[47]  G. Schatz,et al.  Quantum mechanical reactive scattering for three-dimensional atom plus diatom systems. II. Accurate cross sections for H+H2 , 1976 .

[48]  G. Schatz,et al.  Quantum mechanical reactive scattering for three-dimensional atom plus diatom systems. I. Theory , 1976 .

[49]  William H. Miller,et al.  Importance of nonseparability in quantum mechanical transition-state theory , 1976 .

[50]  M. Shapiro,et al.  A collinear analytic model for atom–diatom chemical reactions , 1976 .

[51]  G. Schatz,et al.  Dynamical resonances in collinear, coplanar, and three-dimensional quantum mechanical reactive scattering , 1975 .

[52]  G. Schatz,et al.  Exact quantum, quasiclassical, and semiclassical reaction probabilities for the collinear F+H2 → FH+H reaction , 1975 .

[53]  R. Wyatt,et al.  Hindered asymmetric top wavefunctions for three‐dimensional H+H2 , 1975 .

[54]  Robert E. Wyatt,et al.  Quantum mechanical reaction cross sections for the three‐dimensional hydrogen exchange reaction , 1975 .

[55]  Michael J. Berry Golden rule calculation of reaction product vibronic state distributions , 1974 .

[56]  R. T. Pack Space‐fixed vs body‐fixed axes in atom‐diatomic molecule scattering. Sudden approximations , 1974 .

[57]  Michael J. Berry F + H2, D2, HD reactions: Chemical laser determination of the product vibrational state populations and the F + HD intramolecular kinetic isotope effect , 1973 .

[58]  D. J. L. Roy,et al.  Rate constants for the reaction D+H2=DH+H at low temperatures using ESR detection , 1973 .

[59]  H. Eyring,et al.  Absolute Reaction Rate Constants and Chemical Reaction Cross Sections of Bimolecular Reactions , 1971 .

[60]  J. Bowman,et al.  Classical and quantum reaction probabilities and thermal rate constants for the collinear H+H2 exchange reaction with vibrational excitation , 1971 .

[61]  G. L. Hofacker,et al.  A non adiabatic model for population inversion in molecular collisions , 1971 .

[62]  J. Connor,et al.  Differential cross sections for chemically reactive systems , 1970 .

[63]  R. Wyatt Quantum Mechanics of the H+H2 Reaction: Investigation of Vibrational Adiabatic Models , 1969 .

[64]  E. Mortensen Permeabilities and Transmission Coefficients for Various Isotopic Reactions of the Type H + H2=H2 + H , 1968 .

[65]  A. A. Westenberg,et al.  Atom—Molecule Kinetics Using ESR Detection. III. Results for O+D2→OD+D and Theoretical Comparison with O+H2→OH+H , 1967 .

[66]  A. A. Westenberg,et al.  Atom—Molecule Kinetics Using ESR Detection. II. Results for D+H2→HD+H and H+D2→HD+D , 1967 .

[67]  Rudolph A. Marcus,et al.  On the Analytical Mechanics of Chemical Reactions. Classical Mechanics of Linear Collisions , 1966 .

[68]  R. Marcus Chemical‐Reaction Cross Sections, Quasiequilibrium, and Generalized Activated Complexes , 1966 .

[69]  Martin Karplus,et al.  Exchange Reactions with Activation Energy. I. Simple Barrier Potential for (H, H2) , 1965 .

[70]  M. Karplus,et al.  Potential Energy Surface for H3 , 1964 .

[71]  B. Thrush,et al.  Rates of elementary processes in the chain reaction between hydrogen and oxygen I. Reactions of oxygen atoms , 1963, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[72]  J. Ross,et al.  Some Deductions from a Formal Statistical Mechanical Theory of Chemical Kinetics , 1961 .

[73]  J. Hirschfelder,et al.  General Collision Theory Treatment for the Rate of Bimolecular, Gas Phase Reactions , 1959 .

[74]  M. Newman,et al.  New Reactions Involving Alkaline Treatment of 3-Nitroso-2-oxazolidones1 , 1951 .

[75]  C. F. Curtiss,et al.  The Separation of the Rotational Coordinates from the N‐Particle Schroedinger Equation , 1950 .

[76]  H. Eyring The Activated Complex in Chemical Reactions , 1935 .

[77]  Bowen Liu Classical barrier height for H+H2→H2+H , 1984 .

[78]  B. C. Garrett,et al.  A least‐action variational method for calculating multidimensional tunneling probabilities for chemical reactions , 1983 .

[79]  S. H. Suck,et al.  Distorted-wave—Born-approximation study of angular distributions for state-to-state rearrangement collisions: Role of orbital angular momentum , 1982 .

[80]  E. F. Hayes,et al.  Theoretical analysis of the reaction atomic fluorine + molecular hydrogen (v = 0) .fwdarw. hydrogen fluoride (v = 0, 1, 2, 3) + atomic hydrogen , 1982 .

[81]  G. B. Skinner,et al.  Resonance absorption measurements of atom concentrations in reacting gas mixtures. VIII. Rate constants for O+H2→OH+H and O+D2→OD+D from measurements of O atoms in oxidation of H2 and D2 by N2O , 1982 .

[82]  John E. Adams,et al.  Reaction path Hamiltonian for polyatomic molecules , 1980 .

[83]  R. Raffenetti,et al.  A theoretical study of the potential energy surface for O(3P)+H2 , 1980 .

[84]  E. Pollak,et al.  Unified statistical model for ’’complex’’ and ’’direct’’ reaction mechanisms: A test on the collinear H+H2 exchange reaction , 1979 .

[85]  G. Schatz,et al.  Angular momentum decoupling approximations in the quantum dynamics of reactive systems , 1977 .

[86]  R. Wyatt,et al.  Jz conserving approximation for the hydrogen exchange reaction , 1976 .