Variable selection for fixed effects varying coefficient models

We consider the problem of variable selection for the fixed effects varying coefficient models. A variable selection procedure is developed using basis function approximations and group nonconcave penalized functions, and the fixed effects are removed using the proper weight matrices. The proposed procedure simultaneously removes the fixed individual effects, selects the significant variables and estimates the nonzero coefficient functions. With appropriate selection of the tuning parameters, an asymptotic theory for the resulting estimates is established under suitable conditions. Simulation studies are carried out to assess the performance of our proposed method, and a real data set is analyzed for further illustration.

[1]  Jiti Gao,et al.  Non�?Parametric Time�?Varying Coefficient Panel Data Models with Fixed Effects , 2011 .

[2]  H. Lian,et al.  Empirical likelihood inference for partially linear panel data models with fixed effects , 2011 .

[3]  J. Lafferty,et al.  Sparse additive models , 2007, 0711.4555.

[4]  Tang Qingguo,et al.  M-estimation and B-spline approximation for varying coefficient models with longitudinal data , 2008 .

[5]  Lixing Zhu,et al.  Empirical Likelihood for a Varying Coefficient Model With Longitudinal Data , 2007 .

[6]  Jianqing Fan,et al.  Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties , 2001 .

[7]  Dong Li,et al.  Series Estimation of Partially Linear Panel Data Models with Fixed Effects , 2002 .

[8]  Qi Li,et al.  Nonparametric estimation and testing of fixed effects panel data models. , 2008, Journal of econometrics.

[9]  Huixia Judy Wang,et al.  Variable selection in quantile varying coefficient models with longitudinal data , 2013, Comput. Stat. Data Anal..

[10]  Jianhua Z. Huang Local asymptotics for polynomial spline regression , 2003 .

[11]  Z. Cai,et al.  NONPARAMETRIC ESTIMATION OF VARYING COEFFICIENT DYNAMIC PANEL DATA MODELS , 2008, Econometric Theory.

[12]  Yang Feng,et al.  Nonparametric Independence Screening in Sparse Ultra-High-Dimensional Additive Models , 2009, Journal of the American Statistical Association.

[13]  Heng Peng,et al.  Simultaneous confidence band for nonparametric fixed effects panel data models , 2013 .

[14]  Jianhua Z. Huang,et al.  Variable Selection in Nonparametric Varying-Coefficient Models for Analysis of Repeated Measurements , 2008, Journal of the American Statistical Association.

[15]  Jianqing Fan,et al.  Nonconcave penalized likelihood with a diverging number of parameters , 2004, math/0406466.

[16]  Yingcun Xia,et al.  Shrinkage Estimation of the Varying Coefficient Model , 2008 .

[17]  Chin-Tsang Chiang,et al.  Smoothing Spline Estimation for Varying Coefficient Models With Repeatedly Measured Dependent Variables , 2001 .

[18]  Zongwu Cai,et al.  Trending time-varying coefficient time series models with serially correlated errors , 2007 .

[19]  Jianqing Fan,et al.  Semilinear High-Dimensional Model for Normalization of Microarray Data , 2005 .

[20]  Jianqing Fan,et al.  Comments on «Wavelets in statistics: A review» by A. Antoniadis , 1997 .

[21]  Peixin Zhao,et al.  Variable selection for varying coefficient models with measurement errors , 2011 .

[22]  A. Ullah,et al.  Profile likelihood estimation of partially linear panel data models with fixed effects , 2006 .

[23]  Runze Li,et al.  Tuning parameter selectors for the smoothly clipped absolute deviation method. , 2007, Biometrika.

[24]  A. Antoniadis Wavelets in statistics: A review , 1997 .

[25]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[26]  R. Carroll,et al.  Semiparametric estimation of fixed-effects panel data varying coefficient models , 2009 .

[27]  J. Friedman,et al.  A Statistical View of Some Chemometrics Regression Tools , 1993 .

[28]  Hohsuk Noh,et al.  SPARSE VARYING COEFFICIENT MODELS FOR LONGITUDINAL DATA , 2010 .

[29]  Jianhua Z. Huang,et al.  Varying‐coefficient models and basis function approximations for the analysis of repeated measurements , 2002 .

[30]  Lixing Zhu,et al.  NONCONCAVE PENALIZED M-ESTIMATION WITH A DIVERGING NUMBER OF PARAMETERS , 2011 .