Modulation of mitochondrial and inflammatory homeostasis through RIP140 is neuroprotective in an adrenoleukodystrophy mouse model

Mitochondrial dysfunction and inflammation are at the core of axonal degeneration in several multifactorial neurodegenerative diseases, including multiple sclerosis, Alzheimer's disease, and Parkinson's disease. The transcriptional coregulator RIP140/NRIP1 (receptor‐interacting protein 140) modulates these functions in liver and adipose tissue, but its role in the nervous system remains unexplored. Here, we investigated the impact of RIP140 in the Abcd1− mouse model of X‐linked adrenoleukodystrophy (X‐ALD), a genetic model of chronic axonopathy involving the convergence of redox imbalance, bioenergetic failure, and chronic inflammation.

[1]  M. Dewhirst,et al.  Tumor necrosis factor-alpha is a potent endogenous mutagen that promotes cellular transformation. , 2006, Cancer research.

[2]  Z. Dai,et al.  Involvement of receptor-interacting protein 140 in palmitate-stimulated macrophage infiltration of pancreatic beta cells , 2017, Experimental and therapeutic medicine.

[3]  M. Christian,et al.  Distinct functions for RIP140 in development, inflammation, and metabolism , 2013, Trends in Endocrinology & Metabolism.

[4]  Z. Dai,et al.  RIP140 is Associated with Subclinical Inflammation in Type 2 Diabetic Patients , 2012, Experimental and Clinical Endocrinology & Diabetes (Barth).

[5]  Tracy J. Yuen,et al.  M2 microglia and macrophages drive oligodendrocyte differentiation during CNS remyelination , 2013, Nature Neuroscience.

[6]  M. Christian,et al.  The nuclear cofactor receptor interacting protein-140 (RIP140) regulates the expression of genes involved in Aβ generation , 2016, Neurobiology of Aging.

[7]  A. Moser,et al.  Is microglial apoptosis an early pathogenic change in cerebral X‐linked adrenoleukodystrophy? , 2008, Annals of neurology.

[8]  A. Woods,et al.  The nuclear receptor cofactor, receptor-interacting protein 140, is required for the regulation of hepatic lipid and glucose metabolism by liver X receptor. , 2007, Molecular endocrinology.

[9]  F. Villarroya,et al.  Impaired mitochondrial oxidative phosphorylation in the peroxisomal disease X-linked adrenoleukodystrophy. , 2013, Human molecular genetics.

[10]  B. Weschke,et al.  Potential Risks to Stable Long-term Outcome of Allogeneic Hematopoietic Stem Cell Transplantation for Children With Cerebral X-linked Adrenoleukodystrophy , 2018, JAMA network open.

[11]  Stéphane Fourcade,et al.  A key role for the peroxisomal ABCD2 transporter in fatty acid homeostasis. , 2009, American journal of physiology. Endocrinology and metabolism.

[12]  E Vicaut,et al.  Rapid reactive oxygen species production by mitochondria in endothelial cells exposed to tumor necrosis factor-alpha is mediated by ceramide. , 2001, American journal of respiratory cell and molecular biology.

[13]  Michael S. Becker,et al.  TNF‐α mediates mitochondrial uncoupling and enhances ROS‐dependent cell migration via NF‐κB activation in liver cells , 2014, FEBS letters.

[14]  A. Fatemi,et al.  Dendrimer–N‐acetyl‐L‐cysteine modulates monophagocytic response in adrenoleukodystrophy , 2018, Annals of neurology.

[15]  A. Cherniack,et al.  Suppression of oxidative metabolism and mitochondrial biogenesis by the transcriptional corepressor RIP140 in mouse adipocytes. , 2005, The Journal of clinical investigation.

[16]  I. Ferrer,et al.  Oxidative stress, mitochondrial and proteostasis malfunction in adrenoleukodystrophy: A paradigm for axonal degeneration. , 2015, Free radical biology & medicine.

[17]  M. Portero-Otín,et al.  Oxidative damage compromises energy metabolism in the axonal degeneration mouse model of X-adrenoleukodystrophy. , 2011, Antioxidants & redox signaling.

[18]  K. Gardiner Transcriptional Dysregulation in Down Syndrome: Predictions for Altered Protein Complex Stoichiometries and Post-translational Modifications, and Consequences for Learning/Behavior Genes ELK, CREB, and the Estrogen and Glucocorticoid Receptors , 2006, Behavior genetics.

[19]  M. Beal,et al.  Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases , 2006, Nature.

[20]  Norbert Gretz,et al.  Coactivator function of RIP140 for NFkappaB/RelA-dependent cytokine gene expression. , 2008, Blood.

[21]  M. Schachner,et al.  Late onset neurological phenotype of the X-ALD gene inactivation in mice: a mouse model for adrenomyeloneuropathy. , 2002, Human molecular genetics.

[22]  H. Stockinger,et al.  X-linked adrenoleukodystrophy: very long-chain fatty acid metabolism is severely impaired in monocytes but not in lymphocytes , 2013, Human molecular genetics.

[23]  M. Poutanen,et al.  The Transcriptional Corepressor RIP140 Regulates Oxidative Metabolism in Skeletal Muscle , 2007, Cell metabolism.

[24]  Jean Mosser,et al.  Putative X-linked adrenoleukodystrophy gene shares unexpected homology with ABC transporters , 1993, Nature.

[25]  A. Moser,et al.  Biomarker Identification, Safety, and Efficacy of High-Dose Antioxidants for Adrenomyeloneuropathy: a Phase II Pilot Study , 2019, Neurotherapeutics.

[26]  David A. Williams,et al.  Hematopoietic Stem‐Cell Gene Therapy for Cerebral Adrenoleukodystrophy , 2017, The New England journal of medicine.

[27]  P. Vreken,et al.  Inactivation of the peroxisomal ABCD2 transporter in the mouse leads to late-onset ataxia involving mitochondria, Golgi and endoplasmic reticulum damage. , 2005, Human molecular genetics.

[28]  M. Beal,et al.  Pioglitazone halts axonal degeneration in a mouse model of X-linked adrenoleukodystrophy. , 2013, Brain : a journal of neurology.

[29]  R. Wanders,et al.  X-linked adrenoleukodystrophy in women: a cross-sectional cohort study. , 2014, Brain : a journal of neurology.

[30]  A. Fischer,et al.  Reversal of early neurologic and neuroradiologic manifestations of X-linked adrenoleukodystrophy by bone marrow transplantation. , 1990, The New England journal of medicine.

[31]  F. Eichler,et al.  The genetic landscape of X-linked adrenoleukodystrophy: inheritance, mutations, modifier genes, and diagnosis. , 2015, The application of clinical genetics.

[32]  I. Singh,et al.  Pathomechanisms Underlying X‐Adrenoleukodystrophy: A Three‐Hit Hypothesis , 2009, Brain pathology.

[33]  D. Greaves,et al.  NF-κB-mediated degradation of the co-activator RIP140 regulates inflammatory response and contributes to endotoxin tolerance , 2012, Nature Immunology.

[34]  H. Moser,et al.  Plasma very long chain fatty acids in 3,000 peroxisome disease patients and 29,000 controls , 1999, Annals of neurology.

[35]  W. Köhler,et al.  Allogeneic hematopoietic stem cell transplantation with myeloablative conditioning for adult cerebral X‐linked adrenoleukodystrophy , 2018, Journal of inherited metabolic disease.

[36]  E. Galea,et al.  Tauroursodeoxycholic bile acid arrests axonal degeneration by inhibiting the unfolded protein response in X-linked adrenoleukodystrophy , 2016, Acta Neuropathologica.

[37]  F. Villarroya,et al.  Early oxidative damage underlying neurodegeneration in X-adrenoleukodystrophy. , 2008, Human molecular genetics.

[38]  T. Mak,et al.  TNF and ROS Crosstalk in Inflammation. , 2016, Trends in cell biology.

[39]  M. Zannini,et al.  NRIP1/RIP140 siRNA-mediated attenuation counteracts mitochondrial dysfunction in Down syndrome. , 2014, Human molecular genetics.

[40]  J. Mandel,et al.  Functional overlap between ABCD1 (ALD) and ABCD2 (ALDR) transporters: a therapeutic target for X-adrenoleukodystrophy. , 2004, Human molecular genetics.

[41]  N. Popitsch,et al.  Impaired plasticity of macrophages in X-linked adrenoleukodystrophy , 2018, Brain : a journal of neurology.

[42]  I. Rosewell,et al.  The nuclear receptor co-repressor Nrip1 (RIP140) is essential for female fertility , 2000, Nature Medicine.

[43]  M. Beal,et al.  High‐dose biotin restores redox balance, energy and lipid homeostasis, and axonal health in a model of adrenoleukodystrophy , 2020, Brain pathology.

[44]  A. Moser,et al.  The peroxisomal fatty acid transporter ABCD1/PMP-4 is required in the C. elegans hypodermis for axonal maintenance: A worm model for adrenoleukodystrophy. , 2020, Free radical biology & medicine.

[45]  Manfred Schmidt,et al.  Hematopoietic Stem Cell Gene Therapy with a Lentiviral Vector in X-Linked Adrenoleukodystrophy , 2009, Science.

[46]  P. So,et al.  Nuclear receptor corepressor RIP140 regulates fat accumulation. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[47]  A. Moser,et al.  Newborn Screening and Emerging Therapies for X-Linked Adrenoleukodystrophy. , 2018, JAMA neurology.

[48]  J. Nautiyal Transcriptional coregulator RIP140: an essential regulator of physiology. , 2017, Journal of molecular endocrinology.

[49]  Li-Na Wei,et al.  Receptor-interacting protein 140 as a co-repressor of Heat Shock Factor 1 regulates neuronal stress response , 2017, Cell Death & Disease.

[50]  I. Ferrer,et al.  Autophagy induction halts axonal degeneration in a mouse model of X-adrenoleukodystrophy , 2014, Acta Neuropathologica.

[51]  Shelly K McCrady-Spitzer,et al.  Reducing RIP140 Expression in Macrophage Alters ATM Infiltration, Facilitates White Adipose Tissue Browning, and Prevents High-Fat Diet–Induced Insulin Resistance , 2014, Diabetes.

[52]  H. Lassmann,et al.  Lack of adrenoleukodystrophy protein enhances oligodendrocyte disturbance and microglia activation in mice with combined Abcd1/Mag deficiency , 2007, Acta Neuropathologica.

[53]  T. Maurice,et al.  Cognitive impairments in adult mice with constitutive inactivation of RIP140 gene expression , 2012, Genes, brain, and behavior.

[54]  B. Poll-The,et al.  X-linked adrenoleukodystrophy (X-ALD): clinical presentation and guidelines for diagnosis, follow-up and management , 2012, Orphanet Journal of Rare Diseases.

[55]  F. Villarroya,et al.  Altered glycolipid and glycerophospholipid signaling drive inflammatory cascades in adrenomyeloneuropathy. , 2015, Human molecular genetics.

[56]  S. Herzig,et al.  Nuclear receptor cofactor receptor interacting protein 140 controls hepatic triglyceride metabolism during wasting in mice , 2008, Hepatology.

[57]  F. Eichler,et al.  Microglial dysfunction as a key pathological change in adrenomyeloneuropathy , 2017, Annals of neurology.

[58]  O. Garaschuk,et al.  Neuroinflammation in Alzheimer's disease , 2015, The Lancet Neurology.

[59]  Li-Na Wei,et al.  Receptor-Interacting Protein 140 Orchestrates the Dynamics of Macrophage M1/M2 Polarization , 2015, Journal of Innate Immunity.

[60]  F. Kelly,et al.  Functional genomic analysis unravels a metabolic-inflammatory interplay in adrenoleukodystrophy , 2011, Human molecular genetics.

[61]  C. Cervellati,et al.  4-hydroxynonenal protein adducts: Key mediator in Rett syndrome oxinflammation. , 2017, Free radical biology & medicine.

[62]  I. Ferrer,et al.  General Aspects and Neuropathology of X‐Linked Adrenoleukodystrophy , 2009, Brain pathology.

[63]  H. Werner,et al.  Abcd2 Is a Strong Modifier of the Metabolic Impairments in Peritoneal Macrophages of Abcd1-Deficient Mice , 2014, PloS one.

[64]  D. Butterfield,et al.  Oxidative Stress and Down Syndrome: A Route toward Alzheimer-Like Dementia , 2011, Current gerontology and geriatrics research.

[65]  M. Portero-Otín,et al.  Antioxidants Halt Axonal Degeneration in a Mouse Model of X-Adrenoleukodystrophy , 2011, Annals of neurology.

[66]  M. Beal,et al.  Aberrant regulation of the GSK‐3β/NRF2 axis unveils a novel therapy for adrenoleukodystrophy , 2018, EMBO molecular medicine.

[67]  I. Ferrer,et al.  Oxidative stress regulates the ubiquitin-proteasome system and immunoproteasome functioning in a mouse model of X-adrenoleukodystrophy. , 2013, Brain : a journal of neurology.

[68]  Mara Dierssen,et al.  Opposite Phenotypes of Muscle Strength and Locomotor Function in Mouse Models of Partial Trisomy and Monosomy 21 for the Proximal Hspa13-App Region , 2015, PLoS genetics.

[69]  M. Beal,et al.  Activation of sirtuin 1 as therapy for the peroxisomal disease adrenoleukodystrophy , 2015, Cell Death and Differentiation.