Lower Bounds on the Minimum Project Duration

In this chapter methods to calculate lower bounds on the minimum project duration (i.e. the makespan C max ) of the basic resource-constrained project scheduling problem \(\mathit{PS}\,\mid \,\mathit{prec}\,\mid \,C_{\mathit{max}}\) are presented. We distinguish between constructive and destructive lower bounds.

[1]  Peter Brucker,et al.  A linear programming and constraint propagation-based lower bound for the RCPSP , 2000, Eur. J. Oper. Res..

[2]  Rolf H. Möhring,et al.  Solving Project Scheduling Problems by Minimum Cut Computations , 2002, Manag. Sci..

[3]  Peter Brucker,et al.  Lower bounds for resource-constrained project scheduling problems , 2003, Eur. J. Oper. Res..

[4]  Christian Artigues,et al.  Resource-Constrained Project Scheduling: Models, Algorithms, Extensions and Applications , 2007 .

[5]  Philippe Baptiste,et al.  Constraint - based scheduling : applying constraint programming to scheduling problems , 2001 .

[6]  Peter Brucker,et al.  Complex Scheduling , 2006 .

[7]  E. W. Davis,et al.  Multiple Resource–Constrained Scheduling Using Branch and Bound , 1978 .

[8]  Philippe Baptiste,et al.  Lower Bounds for Resource Constrained Project Scheduling Problem , 2006 .

[9]  Joanna Józefowska,et al.  Perspectives in modern project scheduling , 2006 .

[10]  V. Maniezzo,et al.  An Exact Algorithm for the Resource-Constrained Project Scheduling Problem Based on a New Mathematical Formulation , 1998 .

[11]  P. Brucker,et al.  Tabu Search Algorithms and Lower Bounds for the Resource-Constrained Project Scheduling Problem , 1999 .

[12]  Rainer Kolisch,et al.  PSPLIB - A project scheduling problem library: OR Software - ORSEP Operations Research Software Exchange Program , 1997 .

[13]  Armin Scholl,et al.  Computing lower bounds by destructive improvement: An application to resource-constrained project scheduling , 1999, Eur. J. Oper. Res..

[14]  Erwin Pesch,et al.  A Survey of Interval Capacity Consistency Tests for Time- and Resource-Constrained Scheduling , 1999 .

[15]  Jacques Carlier,et al.  A new LP-based lower bound for the cumulative scheduling problem , 2000, Eur. J. Oper. Res..

[16]  Silvano Martello,et al.  Meta-Heuristics: Advances and Trends in Local Search Paradigms for Optimization , 2012 .

[17]  Lucio Bianco,et al.  A new lower bound for the resource-constrained project scheduling problem with generalized precedence relations , 2011, Comput. Oper. Res..

[18]  Philippe Baptiste,et al.  Tight LP bounds for resource constrained project scheduling , 2004, OR Spectr..

[19]  Eric Sanlaville,et al.  Linear programming based algorithms for preemptive and non-preemptive RCPSP , 2007, Eur. J. Oper. Res..

[20]  Peter J. Stuckey,et al.  Explaining the cumulative propagator , 2010, Constraints.