BTTB-based numerical schemes for three-dimensional gravity field inversion

[1]  L. Pedersen,et al.  Eigenvector analysis of gravity gradient tensor to locate geologic bodies , 2010 .

[2]  Gordon R. J. Cooper,et al.  Gridding gravity data using an equivalent layer , 2000 .

[3]  D. Oldenburg,et al.  3-D inversion of gravity data , 1998 .

[4]  Åke Björck,et al.  Numerical methods for least square problems , 1996 .

[5]  M. Zhdanov,et al.  Large‐scale 3D inversion of potential field data , 2012 .

[6]  R. Vieira,et al.  Gravity inversion by means of growing bodies , 2000 .

[7]  A. N. Tikhonov,et al.  Solutions of ill-posed problems , 1977 .

[8]  Kristofer Davis,et al.  Fast solution of geophysical inversion using adaptive mesh, space-filling curves and wavelet compression , 2011 .

[9]  M. Zhdanov,et al.  3‐D magnetic inversion with data compression and image focusing , 2002 .

[10]  Ian Briggs Machine contouring using minimum curvature , 1974 .

[11]  R. Chan,et al.  An Introduction to Iterative Toeplitz Solvers , 2007 .

[12]  D. Oldenburg,et al.  Fast inversion of large-scale magnetic data using wavelet transforms and a logarithmic barrier method , 2003 .

[13]  D. T. Thompson,et al.  EULDPH: A new technique for making computer-assisted depth estimates from magnetic data , 1982 .

[14]  F. Boschetti,et al.  Analysis of potential field data in the wavelet domain , 1999 .

[15]  Gerald W. Hohmann,et al.  Nonlinear magnetic inversion using a random search method , 1983 .

[16]  M. Okabe Analytical expressions for gravity anomalies due to homogeneous polyhedral bodies and translations into magnetic anomalies , 1979 .

[17]  M. Chouteau,et al.  3D stochastic inversion of gravity data using cokriging and cosimulation , 2010 .

[18]  Kristofer Davis,et al.  Efficient 3D inversion of magnetic data via octree-mesh discretization, space-filling curves, and wavelets , 2013 .

[19]  Luca Cocchi,et al.  Rapid 3-D forward model of potential fields with application to the Palinuro Seamount magnetic anomaly (southern Tyrrhenian Sea, Italy) , 2009 .

[20]  Lindrith Cordell,et al.  A scattered equivalent-source method for interpolation and gridding of potential-field data in three dimensions , 1992 .

[21]  Mark Pilkington,et al.  3-D magnetic imaging using conjugate gradients , 1997 .

[22]  Michael S. Zhdanov,et al.  Three-dimensional regularized focusing inversion of gravity gradient tensor component data , 2004 .

[23]  D. Oldenburg,et al.  Generalized subspace methods for large-scale inverse problems , 1993 .

[24]  M. Pilkington,et al.  Determination of crustal interface topography from potential fields , 1986 .

[25]  E. Haber,et al.  Adaptive finite volume method for distributed non-smooth parameter identification , 2007 .

[26]  Michael S. Zhdanov,et al.  New advances in regularized inversion of gravity and electromagnetic data , 2009 .

[27]  Lars Eldén,et al.  An Algorithm for the Regularization of Ill-Conditioned, Banded Least Squares Problems , 1984 .

[28]  E. Haber,et al.  Grid refinement and scaling for distributed parameter estimation problems , 2001 .

[29]  Ahmed Salem,et al.  A combined analytic signal and Euler method (AN-EUL) for automatic interpretation of magnetic data , 2003 .

[30]  L. Uieda,et al.  Robust 3D Gravity Gradient Inversion By Planting Anomalous Densities , 2012 .

[31]  Michael A. Saunders,et al.  LSQR: An Algorithm for Sparse Linear Equations and Sparse Least Squares , 1982, TOMS.

[32]  Douglas W. Oldenburg,et al.  3-D inversion of magnetic data , 1996 .

[33]  R. Blakely Potential theory in gravity and magnetic applications , 1996 .

[34]  Yaoguo Li,et al.  Inversion of gravity data using a binary formulation , 2006 .

[35]  D. Rao,et al.  Nomograms for rapid evaluation of magnetic anomalies over long tabular bodies , 1981 .

[36]  J. Nagy,et al.  FFT-based preconditioners for Toeplitz-block least squares problems , 1993 .

[37]  Michael S. Zhdanov,et al.  3D inversion of airborne electromagnetic data using a moving footprint , 2010 .

[38]  M. Zhdanov,et al.  Large-scale three-dimensional inversion of EarthScope MT data using the integral equation method , 2010 .

[39]  Jan Vanthienen,et al.  A tool-supported approach to inter-tabular verification , 1998 .

[40]  Raymond H. Chan,et al.  Conjugate Gradient Methods for Toeplitz Systems , 1996, SIAM Rev..