BTTB-based numerical schemes for three-dimensional gravity field inversion
暂无分享,去创建一个
[1] L. Pedersen,et al. Eigenvector analysis of gravity gradient tensor to locate geologic bodies , 2010 .
[2] Gordon R. J. Cooper,et al. Gridding gravity data using an equivalent layer , 2000 .
[3] D. Oldenburg,et al. 3-D inversion of gravity data , 1998 .
[4] Åke Björck,et al. Numerical methods for least square problems , 1996 .
[5] M. Zhdanov,et al. Large‐scale 3D inversion of potential field data , 2012 .
[6] R. Vieira,et al. Gravity inversion by means of growing bodies , 2000 .
[7] A. N. Tikhonov,et al. Solutions of ill-posed problems , 1977 .
[8] Kristofer Davis,et al. Fast solution of geophysical inversion using adaptive mesh, space-filling curves and wavelet compression , 2011 .
[9] M. Zhdanov,et al. 3‐D magnetic inversion with data compression and image focusing , 2002 .
[10] Ian Briggs. Machine contouring using minimum curvature , 1974 .
[11] R. Chan,et al. An Introduction to Iterative Toeplitz Solvers , 2007 .
[12] D. Oldenburg,et al. Fast inversion of large-scale magnetic data using wavelet transforms and a logarithmic barrier method , 2003 .
[13] D. T. Thompson,et al. EULDPH: A new technique for making computer-assisted depth estimates from magnetic data , 1982 .
[14] F. Boschetti,et al. Analysis of potential field data in the wavelet domain , 1999 .
[15] Gerald W. Hohmann,et al. Nonlinear magnetic inversion using a random search method , 1983 .
[16] M. Okabe. Analytical expressions for gravity anomalies due to homogeneous polyhedral bodies and translations into magnetic anomalies , 1979 .
[17] M. Chouteau,et al. 3D stochastic inversion of gravity data using cokriging and cosimulation , 2010 .
[18] Kristofer Davis,et al. Efficient 3D inversion of magnetic data via octree-mesh discretization, space-filling curves, and wavelets , 2013 .
[19] Luca Cocchi,et al. Rapid 3-D forward model of potential fields with application to the Palinuro Seamount magnetic anomaly (southern Tyrrhenian Sea, Italy) , 2009 .
[20] Lindrith Cordell,et al. A scattered equivalent-source method for interpolation and gridding of potential-field data in three dimensions , 1992 .
[21] Mark Pilkington,et al. 3-D magnetic imaging using conjugate gradients , 1997 .
[22] Michael S. Zhdanov,et al. Three-dimensional regularized focusing inversion of gravity gradient tensor component data , 2004 .
[23] D. Oldenburg,et al. Generalized subspace methods for large-scale inverse problems , 1993 .
[24] M. Pilkington,et al. Determination of crustal interface topography from potential fields , 1986 .
[25] E. Haber,et al. Adaptive finite volume method for distributed non-smooth parameter identification , 2007 .
[26] Michael S. Zhdanov,et al. New advances in regularized inversion of gravity and electromagnetic data , 2009 .
[27] Lars Eldén,et al. An Algorithm for the Regularization of Ill-Conditioned, Banded Least Squares Problems , 1984 .
[28] E. Haber,et al. Grid refinement and scaling for distributed parameter estimation problems , 2001 .
[29] Ahmed Salem,et al. A combined analytic signal and Euler method (AN-EUL) for automatic interpretation of magnetic data , 2003 .
[30] L. Uieda,et al. Robust 3D Gravity Gradient Inversion By Planting Anomalous Densities , 2012 .
[31] Michael A. Saunders,et al. LSQR: An Algorithm for Sparse Linear Equations and Sparse Least Squares , 1982, TOMS.
[32] Douglas W. Oldenburg,et al. 3-D inversion of magnetic data , 1996 .
[33] R. Blakely. Potential theory in gravity and magnetic applications , 1996 .
[34] Yaoguo Li,et al. Inversion of gravity data using a binary formulation , 2006 .
[35] D. Rao,et al. Nomograms for rapid evaluation of magnetic anomalies over long tabular bodies , 1981 .
[36] J. Nagy,et al. FFT-based preconditioners for Toeplitz-block least squares problems , 1993 .
[37] Michael S. Zhdanov,et al. 3D inversion of airborne electromagnetic data using a moving footprint , 2010 .
[38] M. Zhdanov,et al. Large-scale three-dimensional inversion of EarthScope MT data using the integral equation method , 2010 .
[39] Jan Vanthienen,et al. A tool-supported approach to inter-tabular verification , 1998 .
[40] Raymond H. Chan,et al. Conjugate Gradient Methods for Toeplitz Systems , 1996, SIAM Rev..