Coupling of a Replicative Polymerase and Helicase: A τ–DnaB Interaction Mediates Rapid Replication Fork Movement

[1]  S. Kim,et al.  Protects in the Leading-strand Polymerase Complex at the Replication Fork (*) , 1996, The Journal of Biological Chemistry.

[2]  C. McHenry,et al.  DnaX Complex of Escherichia coli DNA Polymerase III Holoenzyme , 1995, The Journal of Biological Chemistry.

[3]  H G Dallmann,et al.  DnaX Complex of Escherichia coli DNA Polymerase III Holoenzyme THE χ·ψ , 1995, The Journal of Biological Chemistry.

[4]  E. Egelman,et al.  Bacteriophage T7 helicase/primase proteins form rings around single-stranded DNA that suggest a general structure for hexameric helicases. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[5]  J. Reems,et al.  Escherichia coli DNA Polymerase III Holoenzyme Subunits α, β, and γ Directly Contact the Primer-Template (*) , 1995, The Journal of Biological Chemistry.

[6]  K. Marians Phi X174-type primosomal proteins: purification and assay. , 1995, Methods in enzymology.

[7]  M. Jezewska,et al.  Oligomeric structure of Escherichia coli primary replicative helicase DnaB protein. , 1994, The Journal of biological chemistry.

[8]  K. Marians,et al.  Identification of a domain of Escherichia coli primase required for functional interaction with the DnaB helicase at the replication fork. , 1994, The Journal of biological chemistry.

[9]  P. V. von Hippel,et al.  A physical model for the translocation and helicase activities of Escherichia coli transcription termination protein Rho. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[10]  T. Lohman,et al.  Allosteric Effects of Nucleotide Cofactors on Escherichia coli Rep Helicase&DNA Binding , 1992, Science.

[11]  M. A. Franden,et al.  Coordinated leading- and lagging-strand synthesis at the Escherichia coli DNA replication fork. IV. Reconstitution of an asymmetric, dimeric DNA polymerase III holoenzyme. , 1992, The Journal of biological chemistry.

[12]  E. Zechner,et al.  Coordinated leading- and lagging-strand synthesis at the Escherichia coli DNA replication fork. I. Multiple effectors act to modulate Okazaki fragment size. , 1992, The Journal of biological chemistry.

[13]  J. Reems,et al.  Coordinated leading- and lagging-strand synthesis at the Escherichia coli DNA replication fork. V. Primase action regulates the cycle of Okazaki fragment synthesis. , 1992, The Journal of biological chemistry.

[14]  E. Zechner,et al.  Coordinated leading- and lagging-strand synthesis at the Escherichia coli DNA replication fork. III. A polymerase-primase interaction governs primer size. , 1992, The Journal of biological chemistry.

[15]  K. Marians Prokaryotic DNA replication. , 1992, Annual review of biochemistry.

[16]  M. O’Donnell,et al.  Constitution of the twin polymerase of DNA polymerase III holoenzyme. , 1991, The Journal of biological chemistry.

[17]  M. O’Donnell,et al.  Mechanism of the sliding beta-clamp of DNA polymerase III holoenzyme. , 1991, The Journal of biological chemistry.

[18]  J. Bernstein,et al.  Characterization of the helicase and primase activities of the 63-kDa component of the bacteriophage T7 gene 4 protein. , 1989, The Journal of biological chemistry.

[19]  P. Hough,et al.  ATP-dependent assembly of double hexamers of SV40 T antigen at the viral origin of DNA replication , 1989, Nature.

[20]  A. Kornberg,et al.  DNA polymerase III holoenzyme of Escherichia coli. III. Distinctive processive polymerases reconstituted from purified subunits. , 1988, The Journal of biological chemistry.

[21]  H. Maki,et al.  DNA Polymerase III holoenzyme of Escherichia coli. IV. The holoenzyme is an asymmetric dimer with twin active sites. , 1988, The Journal of biological chemistry.

[22]  K J Marians,et al.  The Escherichia coli preprimosome and DNA B helicase can form replication forks that move at the same rate. , 1987, The Journal of biological chemistry.

[23]  M. O’Donnell,et al.  Accessory proteins bind a primed template and mediate rapid cycling of DNA polymerase III holoenzyme from Escherichia coli. , 1987, The Journal of biological chemistry.

[24]  K. Johanson,et al.  Chemical characterization and purification of the beta subunit of the DNA polymerase III holoenzyme from an overproducing strain. , 1986, The Journal of biological chemistry.

[25]  J. Lebowitz,et al.  The Escherichia coli dnaB replication protein is a DNA helicase. , 1986, The Journal of biological chemistry.

[26]  J. Minden,et al.  Replication of pBR322 DNA in vitro with purified proteins. Requirement for topoisomerase I in the maintenance of template specificity. , 1985, The Journal of biological chemistry.

[27]  R. Bambara,et al.  Site-specific pausing of deoxyribonucleic acid synthesis catalyzed by four forms of Escherichia coli DNA polymerase III. , 1983, Biochemistry.

[28]  M. Venkatesan,et al.  Bacteriophage T4 gene 41 protein, required for the synthesis of RNA primers, is also a DNA helicase. , 1982, The Journal of biological chemistry.

[29]  C. McHenry Purification and characterization of DNA polymerase III'. Identification of tau as a subunit of the DNA polymerase III holoenzyme. , 1982, The Journal of biological chemistry.

[30]  C S McHenry,et al.  DNA polymerase III of Escherichia coli. Purification and identification of subunits. , 1979, The Journal of biological chemistry.

[31]  A. Kornberg,et al.  A multienzyme system for priming the replication of phiX174 viral DNA. , 1978, The Journal of biological chemistry.

[32]  S. Wickner Mechanism of DNA elongation catalyzed by Escherichia coli DNA polymerase III, dnaZ protein, and DNA elongation factors I and III. , 1976, Proceedings of the National Academy of Sciences of the United States of America.

[33]  A. Kornberg,et al.  dnaG gene product, a rifampicin-resistant RNA polymerase, initiates the conversion of a single-stranded coliphage DNA to its duplex replicative form. , 1975, The Journal of biological chemistry.

[34]  M. Chandler,et al.  The replication time of the Escherichia coli K12 chromosome as a function of cell doubling time. , 1975, Journal of molecular biology.

[35]  J. Drake,et al.  Spontaneous Mutation: Genetic Control of Mutation Rates in Bacteriophage T4 , 1969, Nature.

[36]  J. Drake,et al.  Genetic control of mutation rates in bacteriophageT4. , 1969, Nature.