Theory of electrochemical processes at an inlaid disc microelectrode under steady-state conditions

Abstract Solutions have been obtained to the problem of steady-state transport to an inlaid disc electrode subject to control by diffusion, thermodynamics, kinetics, or any combination of these three constraints. Thus we are able to predict the exact shapes of steady-state voltammetric waves under reversible, irreversible and quasi-reversible conditions. Our treatment also provides information about the non-uniform distributions of concentration and current density across the face of the electrode. Novel aspects of voltammetry at microdisc electrodes are discussed and advantages of steady-state measurements are emphasized.

[1]  A. Bond,et al.  Electrochemistry in organic solvents without supporting electrolyte using platinum microelectrodes , 1984 .

[2]  J. J. Smith,et al.  Electrochemistry at Very High Potentials: Oxidation of the Rare Gases and other Gases in Non-Aqueous Solvents at Ultramicroelectrodes. , 1986 .

[3]  Davis K. Cope,et al.  Chronoamperometric current at hemicylinder and band microelectrodes: Theory and experiment , 1987 .

[4]  H. White,et al.  Voltammetric Studies beyond the Solvent Limits with Microelectrodes , 1986 .

[5]  A. Szabó,et al.  Chronoamperometric current at finite disk electrodes , 1982 .

[6]  R. Adams,et al.  Electrochemical behavior very small electrodes in solution: Double potential step, cyclic voltammetry and chronopotentiometry with current reversal , 1982 .

[7]  D. A. Sweigart,et al.  Fabrication of platinum-disk ultramicroelectrodes. , 1988, Analytical chemistry.

[8]  R. Wightman,et al.  Response of microvoltammetric electrodes to homogeneous catalytic and slow heterogeneous charge-transfer reactions , 1980 .

[9]  J. Cassidy,et al.  Electrochemistry at very high potentials: the use of ultramicroelectrodes in the anodic oxidation of short-chain alkanes , 1985 .

[10]  Jürgen Heinze,et al.  Diffusion processes at finite (micro) disk electrodes solved by digital simulation , 1981 .

[11]  R. Wightman,et al.  Ultrafast Voltammetry and Voltammetry in Highly Resistive Solutions with Microvoltammetric Electrodes , 1984 .

[12]  K. Aoki,et al.  Square wave voltammetry at small disk electrodes: Theory and experiment , 1986 .

[13]  R. Wightman,et al.  Faradaic electrochemistry at microvoltammetric electrodes , 1980 .

[14]  K. B. Oldham,et al.  Experimental study of the edge effect at an inlaid electrode , 1983 .

[15]  G. A. Watson A treatise on the theory of Bessel functions , 1944 .

[16]  I. Uchida,et al.  An Electrochemical Fabrication Method for Platinum Ultramicro Disk Electrodes , 1987 .

[17]  M. Fleischmann,et al.  The behavior of microdisk and microring electrodes , 1989 .

[18]  J. Flanagan,et al.  Digital simulation of edge effects at planar disk electrodes , 1973 .

[19]  R. M. Wightman,et al.  Electrochemical kinetics at microelectrodes: Part II. Cyclic voltammetry at band electrodes , 1987 .

[20]  Dennis G. Peters,et al.  Faradaic electrochemistry at microcylinder, band, and tubular band electrodes , 1985 .

[21]  R. McCreery,et al.  Square wave voltammetry on platinum microdisk electrodes using synchronous demodulation , 1985 .

[22]  Keith B. Oldham,et al.  Edge effects in semiinfinite diffusion , 1981 .

[23]  R. Engstrom,et al.  Visualization of the edge effect with electrogenerated chemiluminescence , 1987 .

[24]  A. Bond,et al.  The use of platinum microelectrodes for electrochemical investigations in low temperature glasses of non-aqueous solvents , 1984 .

[25]  Koichi Aoki,et al.  Formulation of the diffusion-controlled current at very small stationary disk electrodes , 1984 .

[26]  M. Kakihana,et al.  Diffusion current at microdisk electrodes—application to accurate measurement of diffusion coefficients , 1981 .

[27]  A. Bond,et al.  Theory and experimental characterization of linear gold microelectrodes with submicrometer thickness , 1986 .

[28]  K. Aoki,et al.  Linear sweep voltammetry at very small stationary disk electrodes , 1984 .

[29]  J. Tomeš Polarographic studies with the dropping mercury kathode. LXVII. Equation of the polarographic wave in the electrodeposition of hydrogen from strong and weak acids , 1937 .

[30]  Z. Soos,et al.  Derivation of the Chronoamperometric Constant for Unshielded, Circular, Planar Electrodes1 , 1964 .

[31]  R. Mark Wightman,et al.  Electroanalytical properties of band electrodes of submicrometer width , 1985 .

[32]  K. Aoki,et al.  Diffusion controlled current at a stationary finite disk electrode: Experiment , 1981 .

[33]  M. Fleischmann,et al.  The application of microelectrodes to the study of homogeneous processes coupled to electrode reactions: Part I. EC′ and CE reactions , 1984 .

[34]  D. Pletcher,et al.  The determination of the kinetics of electron transfer using fast sweep cyclic voltammetry at microdisc electrodes , 1986 .

[35]  K. B. Oldham,et al.  Semiintegral electroanalysis: the shape of irreversible neopolarograms , 1976 .

[36]  A. Bond,et al.  Voltammetric measurements using microelectrodes in highly dilute solutions: Theoretical considerations , 1984 .

[37]  Davis K. Cope,et al.  Diffusion current at a band electrode by an integral equation method , 1986 .