Earthquake geology of the Mondy Fault (SW Baikal Rift, Siberia)

[1]  Xiaoge Liu,et al.  Transtensional coseismic fault slip of the 2021 Mw 6.7 Turt Earthquake and heterogeneous tectonic stress surrounding the Hovsgol Basin, Northwest Mongolia , 2022, Tectonophysics.

[2]  N. Radziminovich FOCAL MECHANISMS OF EARTHQUAKES OF SOUTHERN BAIKAL REGION AND NORTHERN MONGOLIA , 2021, Geodynamics & Tectonophysics.

[3]  Y. Radziminovich,et al.  Source process of the September 21, 2020 Mw 5.6 Bystraya earthquake at the South-Eastern segment of the main Sayan fault (Eastern Siberia, Russia) , 2021, Tectonophysics.

[4]  A. Anastasia,et al.  Long-term throw rates and landscape response to tectonic activity of the Tunka Fault (Baikal Rift) based on morphometry , 2021, Tectonophysics.

[5]  J. Ritz,et al.  Cryoturbation versus tectonic deformation along the southern edge of the Tunka Basin (Baikal Rift System), Siberia: New insights from an integrated morphotectonic and stratigraphic study , 2020, Journal of Asian Earth Sciences.

[6]  Y. Klinger,et al.  Horizontal surface-slip distribution through several seismic cycles: The Eastern Bogd fault, Gobi-Altai, Mongolia , 2018 .

[7]  J. Ritz,et al.  Characterizing the Present‐Day Activity of the Tunka and Sayan Faults Within Their Relay Zone (Western Baikal Rift System, Russia) , 2018 .

[8]  D. Bourlès,et al.  Morphotectonic analysis and 10 Be dating of the Kyngarga river terraces (southwestern flank of the Baikal rift system, South Siberia) , 2018 .

[9]  A. Ivanov,et al.  Catastrophic events in the Quaternary outflow history of Lake Baikal , 2018 .

[10]  A. Shchetnikov Morphotectonic inversion in the Tunka rift basin (southwestern Baikal region) , 2017 .

[11]  A. Gladkov,et al.  Deformation style in the damage zone of the Mondy fault: GPR evidence (Tunka basin, southern East Siberia) , 2016 .

[12]  А. Ю. Мирошниченко,et al.  МЕХАНИЗМЫ ОЧАГОВ ЗЕМЛЕТРЯСЕНИЙ И ПОЛЕ НАПРЯЖЕНИЙ МОНГОЛИИ И ПРИЛЕГАЮЩИХ ТЕРРИТОРИЙ , 2016 .

[13]  R. Braucher,et al.  Late Pleistocene glaciations in southern East Sayan and detection of MIS 2 terminal moraines based on beryllium (10Be) dating of glacier complexes , 2015 .

[14]  É. Calais,et al.  Contemporary horizontal movements and seismicity of the south Baikal Basin (Baikal rift system) , 2014, Izvestiya, Physics of the Solid Earth.

[15]  Oksana V. Lunina,et al.  The 1950 Mw = 6.9 Mondy earthquake in southern East Siberia and associated deformations: facts and uncertainties , 2014, Journal of Seismology.

[16]  A. Chauvet,et al.  Accommodating large-scale intracontinental extension and compression in a single stress-field: A key example from the Baikal Rift System , 2013 .

[17]  N. Radziminovich,et al.  Seismicity of the Baikal rift system from regional network observations , 2013 .

[18]  A. Shchetnikov,et al.  Arshan palaeoseismic feature of the Tunka fault (Baikal rift zone, Russia) , 2013 .

[19]  A. Chauvet,et al.  Slip rate and slip magnitudes of past earthquakes along the Bogd left‐lateral strike‐slip fault (Mongolia) , 2011 .

[20]  Y. Klinger,et al.  Characteristic slip for five great earthquakes along the Fuyun fault in China , 2011 .

[21]  É. Calais,et al.  GPS rotation and strain rates in the Baikal–Mongolia region , 2010 .

[22]  J. Ritz,et al.  Earthquake geology of the Bulnay Fault (Mongolia) , 2009 .

[23]  É. Calais,et al.  Extension in the Baikal rift: Present-day kinematics of passive rifting , 2009 .

[24]  V. Sankov,et al.  How old is the Baikal Rift Zone? Insight from apatite fission track thermochronology , 2009 .

[25]  A. Arzhannikova,et al.  Late Quaternary and current deformation in the western Tunka system of basins: evidence from structural geomorphology and seismology , 2007 .

[26]  É. Calais,et al.  Continental deformation in Asia from a combined GPS solution , 2006 .

[27]  C. Petit,et al.  Structure and evolution of the Baikal rift: A synthesis , 2006 .

[28]  V. San'kov,et al.  Geodynamic conditions of evolution of the Tunka Branch in the Baikal Rift System , 2006 .

[29]  J. Ritz,et al.  Using in situ-produced 10Be to quantify active tectonics in the Gurvan Bogd mountain range (Gobi-Altay, Mongolia) , 2006 .

[30]  Carole Petit,et al.  Present-day velocity and stress fields of the Amurian Plate from thin-shell finite-element modelling , 2004 .

[31]  J. Ritz,et al.  Geometry and kinematics of recent deformation in the Mondy–Tunka area (south‐westernmost Baikal rift zone, Mongolia–Siberia) , 2004 .

[32]  A. Gladkov,et al.  Fault structure of the Runka rift as a reflection of oblique extension , 2004 .

[33]  Mathilde Vergnolle,et al.  GPS measurements of crustal deformation in the Baikal‐Mongolia area (1994–2002): Implications for current kinematics of Asia , 2003 .

[34]  B. Delouis,et al.  A reappraisal of the 1950 (Mw 6.9) Mondy earthquake, Siberia, and its relationship to the strain pattern at the south‐western end of the Baikal rift zone , 2002 .

[35]  J. Déverchère,et al.  Interaction compression-extension à la limite Mongolie-Sibérie : analyse préliminaire des déformations récentes et actuelles dans le bassin de Tunka , 2001 .

[36]  K. Hudnut,et al.  The Surface Rupture of the 1957 Gobi-Altay, Mongolia, Earthquake , 1997 .

[37]  C. Petit,et al.  Present‐day stress field changes along the Baikal rift and tectonic implications , 1996 .

[38]  K. Sieh,et al.  The repetition of large-earthquake ruptures. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[39]  H. Philip,et al.  Slip rates along active faults estimated with cosmic-ray–exposure dates: Application to the Bogd fault, Gobi-Altaï, Mongolia , 1995 .

[40]  J. McCalpin,et al.  Holocene paleoseismicity of the Tunka fault, Baikal rift, Russia , 1995 .

[41]  D. Doser Faulting within the eastern Baikal rift as characterized by earthquake studies , 1991 .