Physiology-based ERPs in normal and abnormal states

Evoked response potentials (ERPs) and other transients are modeled as impulse responses using physiology-based neural field theory (NFT) of the corticothalamic system of neural activity in the human brain that incorporates synaptic and dendritic dynamics, firing response, axonal propagation, and corticocortical and corticothalamic pathways. The properties of model-predicted ERPs are explored throughout the stability zone of the corticothalamic system, and predicted time series and wavelet spectra are also analyzed. This provides a unified treatment of predicted ERPs for both normal and abnormal states within the brain’s stability zone, including likely parameters to represent abnormal states of reduced arousal.

[1]  P. Robinson,et al.  Prediction and verification of nonlinear sleep spindle harmonic oscillations. , 2014, Journal of theoretical biology.

[2]  F. H. Lopes da Silva,et al.  Model of brain rhythmic activity , 1974, Kybernetik.

[3]  Ronald F. Boisvert,et al.  NIST Handbook of Mathematical Functions , 2010 .

[4]  James W. Hall Handbook of Auditory Evoked Responses , 1991 .

[5]  Peter A. Robinson,et al.  K-complexes, spindles, and ERPs as impulse responses: unification via neural field theory , 2017, Biological Cybernetics.

[6]  Lei Yang,et al.  Physiologically based calculation of steady-state evoked potentials and cortical wave velocities , 2008, Biological Cybernetics.

[7]  J. Cowan,et al.  A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue , 1973, Kybernetik.

[8]  Synek Vm,et al.  Prognostically important EEG coma patterns in diffuse anoxic and traumatic encephalopathies in adults. , 1988 .

[9]  R. Llinás,et al.  Brainstem control of wakefulness and sleep, Steriade, McCarley. Plenum Press, New York (1990), Price $85.00 , 1991 .

[10]  P. Robinson,et al.  Dynamics of large-scale brain activity in normal arousal states and epileptic seizures. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[11]  F. H. Lopes da Silva Neural mechanisms underlying brain waves , 1990 .

[12]  William W. Lytton,et al.  Cortical information flow in Parkinson's disease: a composite network/field model , 2013, Front. Comput. Neurosci..

[13]  Russell Anderson,et al.  A Multiscale “Working Brain” Model , 2015 .

[14]  D. Dijk,et al.  Dynamics of electroencephalographic sleep spindles and slow wave activity in men: effect of sleep deprivation , 1993, Brain Research.

[15]  S. Butler,et al.  The clinical role of evoked potentials , 2005, Journal of Neurology, Neurosurgery & Psychiatry.

[16]  P. Robinson,et al.  Compact dynamical model of brain activity. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[17]  P. Halász,et al.  Long latency evoked potential components in human slow wave sleep. , 1988, Electroencephalography and clinical neurophysiology.

[18]  P A Robinson,et al.  Multistability in the corticothalamic system. , 2017, Journal of theoretical biology.

[19]  Sacha Jennifer van Albada,et al.  Mean-field modeling of the basal ganglia-thalamocortical system. I Firing rates in healthy and parkinsonian states. , 2009, Journal of theoretical biology.

[20]  I. Colrain,et al.  Multichannel EEG analysis of respiratory evoked-potential components during wakefulness and NREM sleep. , 1998, Journal of applied physiology.

[21]  N. Zisapel,et al.  Sleep and sleep disturbances: biological basis and clinical implications , 2007, Cellular and Molecular Life Sciences.

[22]  V. Synek,et al.  Prognostically Important EEG Coma Patterns in Diffuse Anoxic and Traumatic Encephalopathies in Adults , 1988, Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society.

[23]  David T. J. Liley,et al.  A millimetric-scale simulation of electrocortical wave dynamics based on anatomical estimates of cortical synaptic density , 1994 .

[24]  Peter N. Robinson,et al.  STEADY STATES AND GLOBAL DYNAMICS OF ELECTRICAL ACTIVITY IN THE CEREBRAL CORTEX , 1998 .

[25]  E. Weitzman,et al.  AUDITORY EVOKED RESPONSES DURING DIFFERENT STAGES OF SLEEP IN MAN. , 1965, Electroencephalography and clinical neurophysiology.

[26]  P. Robinson,et al.  Multiscale brain modelling , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.

[27]  T. Sejnowski,et al.  Thalamocortical oscillations in the sleeping and aroused brain. , 1993, Science.

[28]  Ramesh Srinivasan,et al.  Implications of recording strategy for estimates of neocortical dynamics with electroencephalography. , 1993, Chaos.

[29]  T. Sejnowski,et al.  Spatiotemporal Patterns of Spindle Oscillations in Cortex and Thalamus , 1997, The Journal of Neuroscience.

[30]  P. Robinson,et al.  Physiologically based arousal state estimation and dynamics , 2015, Journal of Neuroscience Methods.

[31]  Panayiota Poirazi,et al.  Computational modeling of the effects of amyloid-beta on release probability at hippocampal synapses , 2013, Front. Comput. Neurosci..

[32]  James J. Wright,et al.  Propagation and stability of waves of electrical activity in the cerebral cortex , 1997 .

[33]  Donald O. Walter,et al.  Mass action in the nervous system , 1975 .

[34]  P A Robinson,et al.  Corticothalamic dynamics: structure of parameter space, spectra, instabilities, and reduced model. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[35]  Piotr J. Durka,et al.  Single evoked potential reconstruction by means of wavelet transform , 2004, Biological Cybernetics.

[36]  R. Guillery,et al.  Exploring the Thalamus , 2000 .

[37]  M. Steriade Brain Electrical Activity and Sensory Processing during Waking and Sleep States , 2005 .

[38]  P A Robinson,et al.  Neural mechanisms of ERP change: combining insights from electrophysiology and mathematical modeling. , 2008, Journal of integrative neuroscience.

[39]  M D Low,et al.  A Comparison of Visual, Brainstem Auditory, and Somatosensory Evoked Potentials in Multiple Sclerosis , 1981, Canadian Journal of Neurological Sciences / Journal Canadien des Sciences Neurologiques.

[40]  J. S. Barlow,et al.  An electronic method for detecting evoked responses of the brain and for reproducing their average waveforms. , 1957, Electroencephalography and clinical neurophysiology.

[41]  P. Robinson,et al.  Modal analysis of corticothalamic dynamics, electroencephalographic spectra, and evoked potentials. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[42]  D. McCormick,et al.  Sleep and arousal: thalamocortical mechanisms. , 1997, Annual review of neuroscience.

[43]  Alfred L. Loomis,et al.  DISTRIBUTION OF DISTURBANCE-PATTERNS IN THE HUMAN ELECTROENCEPHALOGRAM, WITH SPECIAL REFERENCE TO SLEEP , 1938 .

[44]  M. Ferrara,et al.  Sleep spindles: an overview. , 2003, Sleep medicine reviews.

[45]  Sacha Jennifer van Albada,et al.  Unified neural field theory of brain dynamics underlying oscillations in Parkinson's disease and generalized epilepsies. , 2017, Journal of theoretical biology.

[46]  P A Robinson The balanced and introspective brain , 2017, Journal of The Royal Society Interface.

[47]  G. Young,et al.  An Electroencephalographic Classification for Coma , 1997, Canadian Journal of Neurological Sciences / Journal Canadien des Sciences Neurologiques.

[48]  Péter Halász,et al.  K-complex, a reactive EEG graphoelement of NREM sleep: an old chap in a new garment. , 2005, Sleep medicine reviews.

[49]  R Stickgold,et al.  Event‐related potentials (ERPs) to deviant auditory stimuli during sleep and waking , 1996, Neuroreport.

[50]  James J. Wright,et al.  Effects of local feedback on dispersion of electrical waves in the cerebral cortex , 1999 .

[51]  Peter A. Robinson,et al.  Physiology-based modeling of cortical auditory evoked potentials , 2008, Biological Cybernetics.

[52]  P. Robinson,et al.  Spatially uniform and nonuniform analyses of electroencephalographic dynamics,with application to the topography of the alpha rhythm. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[53]  Peter A. Robinson,et al.  Phase transitions in physiologically-based multiscale mean-field brain models , 2010 .

[54]  J. Fermaglich Electric Fields of the Brain: The Neurophysics of EEG , 1982 .

[55]  E. Gordon,et al.  Integrative Neuroscience: The Role of a Standardized Database , 2005, Clinical EEG and neuroscience.

[56]  P. Robinson,et al.  Model-based analysis and quantification of age trends in auditory evoked potentials , 2011, Clinical Neurophysiology.

[57]  James J. Wright,et al.  Inverse filter computation of the neural impulse giving rise to the auditory evoked potential , 2005, Brain Topography.

[58]  E. Ba§ar,et al.  EEG-Brain dynamics: Relation between EEG and brain evoked potentials , 1982 .

[59]  R. Merry Wavelet theory and applications : a literature study , 2005 .

[60]  Ben D. Fulcher,et al.  Quantitative modelling of sleep dynamics , 2011, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[61]  James M Kilner,et al.  Event-related brain dynamics , 2002, Trends in Neurosciences.

[62]  Peter A. Robinson,et al.  Unified neurophysical model of EEG spectra and evoked potentials , 2002, Biological Cybernetics.

[63]  Marina Schmid,et al.  An Introduction To The Event Related Potential Technique , 2016 .

[64]  John R. Terry,et al.  A unifying explanation of primary generalized seizures through nonlinear brain modeling and bifurcation analysis. , 2006, Cerebral cortex.

[65]  P. Nunez,et al.  A theoretical basis for standing and traveling brain waves measured with human EEG with implications for an integrated consciousness , 2006, Clinical Neurophysiology.

[66]  P A Robinson,et al.  Estimation of multiscale neurophysiologic parameters by electroencephalographic means , 2004, Human brain mapping.

[67]  D. Regan Electrical responses evoked from the human brain. , 1979, Scientific American.

[68]  M Steriade,et al.  Intracellular analysis of relations between the slow (< 1 Hz) neocortical oscillation and other sleep rhythms of the electroencephalogram , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[69]  M. Steriade Corticothalamic resonance, states of vigilance and mentation , 2000, Neuroscience.

[70]  F. D. Silva Neural mechanisms underlying brain waves: from neural membranes to networks. , 1991 .