DC modeling and characterization of AlGaAs/GaAs heterojunction bipolar transistors for high-temperature applications

The large signal dc characteristics of AlGaAs/GaAs heterojunction bipolar transistors (HBT) at high temperatures (27/spl deg/-300/spl deg/C) are reported. A high-temperature SPICE model is developed which includes the recombination-generation current components and avalanche multiplication which become extremely important at high temperatures. The effect of avalanche breakdown is also included to model the current due to thermal generation of electron/hole pairs causing breakdown at high temperatures. A parameter extraction program is developed and used to extract the model parameters of HBT's at different temperatures. Fitting functions for the model parameters as a function of temperature are developed. These parameters are then used in the SPICE Ebers-Moll model for the dc characterization of the HBT at any temperature between (27/spl deg/-300/spl deg/C). >

[1]  T. Kerr,et al.  A p-n-p AlGaAs heterojunction bipolar transistor for high-temperature operation , 1986 .

[2]  H. Morkoc,et al.  Breakdown behavior of GaAs/AlGaAs HBTs , 1989 .

[3]  M. E. Hafizi,et al.  The DC characteristics of GaAs/AlGaAs heterojunction bipolar transistors with application to device modeling , 1990 .

[4]  William H. Press,et al.  Numerical Recipes in FORTRAN - The Art of Scientific Computing, 2nd Edition , 1987 .

[5]  Michael Y. Frankel,et al.  An analysis of the large-signal characteristics of AlGaAs/GaAs heterojunction bipolar transistors , 1992 .

[6]  F. Grund Forsythe, G. E. / Malcolm, M. A. / Moler, C. B., Computer Methods for Mathematical Computations. Englewood Cliffs, New Jersey 07632. Prentice Hall, Inc., 1977. XI, 259 S , 1979 .

[7]  J. Choma,et al.  Large signal modeling of HBT's including self-heating and transit time effects , 1992 .

[8]  W. Kloosterman,et al.  A new analytical diode model including tunneling and avalanche breakdown , 1992 .

[9]  M. Migitaka,et al.  Silicon integrated injection logic operating above 350 degrees C , 1991, International Electron Devices Meeting 1991 [Technical Digest].

[10]  F. Klaassen,et al.  Compact transistor modelling for circuit design , 1990 .

[11]  Juin J. Liou,et al.  A physics-based, analytical heterojunction bipolar transistor model, including thermal and high-current effects , 1993 .

[12]  J. L. Ebel,et al.  Thermal effects on the characteristics of AlGaAs/GaAs heterojunction bipolar transistors using two-dimensional numerical simulation , 1993 .

[13]  Mark Lundstrom,et al.  An Ebers-Moll model for the heterostructure bipolar transistor , 1986 .

[14]  K. Alavi,et al.  Temperature dependence of common-emitter I-V and collector breakdown voltage characteristics in AlGaAs/GaAs and AlInAs/GaInAs HBT's grown by MBE , 1992, IEEE Electron Device Letters.

[15]  P. Asbeck,et al.  High power GaAlAs/GaAs HBTs for microwave applications , 1987, 1987 International Electron Devices Meeting.

[16]  A. Rezazadeh,et al.  Current transport mechanism at the emitter-base junction of an n-p-n GaAs/GaAlAs heterojunction bipolar transistor prepared by MBE , 1987, IEEE Transactions on Electron Devices.

[17]  S. M. Sze,et al.  Physics of semiconductor devices , 1969 .

[18]  Paolo Antognetti,et al.  Semiconductor Device Modeling with Spice , 1988 .

[19]  S. Tiwari,et al.  Analysis of the operation of GaAlAs/GaAs HBTs , 1989 .

[20]  R.W. Dutton,et al.  Bipolar transistor modeling of avalanche generation for computer circuit simulation , 1975, IEEE Transactions on Electron Devices.

[21]  Hans L. Hartnagel,et al.  AlGaAs/GaAs HBT for high-temperature applications , 1992 .

[22]  S. L. Miller Ionization Rates for Holes and Electrons in Silicon , 1957 .

[23]  William H. Press,et al.  The Art of Scientific Computing Second Edition , 1998 .