Raman on-chip: current status and future tracks

On-chip Raman sensing enabled by large-scale photonic integration is a promising technology for biological and healthcare applications. In this contribution we give a review the current status of on-chip Raman sensing with a particular focus on the ultimate performances. We discuss the limitations in terms of detection limit and the different paths currently followed to get around them.

[1]  Michael L. Gorodetsky,et al.  Fundamental thermal fluctuations in microspheres , 2004 .

[2]  A. Lita,et al.  Broadband quadrature-squeezed vacuum and nonclassical photon number correlations from a nanophotonic device , 2019, Science Advances.

[3]  R. E. Bartolo,et al.  Thermal Phase Noise Measurements in Optical Fiber Interferometers , 2012, IEEE Journal of Quantum Electronics.

[4]  Kumar Saurav,et al.  Probing the fundamental detection limit of photonic crystal cavities , 2017 .

[5]  P. M. Morse,et al.  Relativity: The Special Theory , 1957 .

[6]  Werner Israel,et al.  Transient relativistic thermodynamics and kinetic theory , 1979 .

[7]  Roel Baets,et al.  Surface enhanced raman spectroscopy using a single mode nanophotonic-plasmonic platform , 2015, 1508.02189.

[8]  Roel Baets,et al.  Efficiency of evanescent excitation and collection of spontaneous Raman scattering near high index contrast channel waveguides. , 2015, Optics express.

[9]  D. Englund,et al.  Fundamental Thermal Noise Limits for Optical Microcavities , 2020, 2005.03533.

[10]  Roel Baets,et al.  High index contrast photonic platforms for on-chip Raman spectroscopy. , 2019, Optics express.

[11]  Roel Baets,et al.  Evanescent excitation and collection of spontaneous Raman spectra using silicon nitride nanophotonic waveguides. , 2014, Optics letters.

[12]  S. Foster,et al.  Fundamental Thermal Noise in Distributed Feedback Fiber Lasers , 2007, IEEE Journal of Quantum Electronics.

[13]  Roel Baets,et al.  Impact of fundamental thermodynamic fluctuations on light propagating in photonic waveguides made of amorphous materials , 2018 .

[14]  R. Loudon,et al.  Response Functions in the Theory of Raman Scattering by Vibrational and Polariton Modes in Dielectric Crystals , 1972 .

[15]  A. Politi,et al.  Nanophotonic source of quadrature squeezing via self-phase modulation , 2020 .

[16]  William S Rabinovich,et al.  Waveguide-enhanced Raman spectroscopy of trace chemical warfare agent simulants. , 2018, Optics letters.

[17]  G. Vojta,et al.  Extended Irreversible Thermodynamics , 1998 .

[18]  I. Muller,et al.  Zum Paradoxon der Warmeleitungstheorie , 1967 .

[19]  L. G. Suttorp,et al.  Foundations of electrodynamics , 1972 .

[20]  K. Y. Foo,et al.  Insights into the modeling of adsorption isotherm systems , 2010 .

[21]  S. Merlo,et al.  Thermodynamic phase noise in fibre interferometers , 1996 .

[22]  Muhammad Muneeb,et al.  ALD assisted nanoplasmonic slot waveguide for on-chip enhanced Raman spectroscopy , 2018, APL Photonics.

[23]  Carl Eckart,et al.  The Thermodynamics of Irreversible Processes. III. Relativistic Theory of the Simple Fluid , 1940 .

[24]  R. A. McGill,et al.  Trace-gas Raman spectroscopy using functionalized waveguides , 2016, 2016 Conference on Lasers and Electro-Optics (CLEO).

[25]  K. Wanser,et al.  Fundamental phase noise limit in optical fibres due to temperature fluctuations , 1992 .

[26]  W. Israel Nonstationary irreversible thermodynamics: A Causal relativistic theory , 1976 .

[27]  Ultra-sensitive slot-waveguide-enhanced Raman spectroscopy for aqueous solutions of non-polar compounds using a functionalized silicon nitride photonic integrated circuit. , 2021, Optics letters.