State-of-the-art review on crystallization control technologies for water/LiBr absorption heat pumps

Abstract The key technical barrier to using water/lithium bromide (LiBr) as the working fluid in air-cooled absorption chillers and absorption heat-pump systems is the risk of crystallization when the absorber temperature rises at fixed evaporating pressure. This article reviews various crystallization control technologies available to resolve this problem: chemical inhibitors, heat and mass transfer enhancement methods, thermodynamic cycle modifications, and absorption system-control strategies. Other approaches, such as boosting absorber pressure and J-tube technology, are reviewed as well. This review can help guide future efforts to develop water/LiBr air-cooled absorption chillers and absorption heat-pump systems.

[1]  Jung-In Yoon,et al.  Cycle analysis of air-cooled absorption chiller using a new working solution , 1999 .

[2]  R. Lizarte,et al.  Evaluation of mass absorption in LiBr flat-fan sheets , 2009 .

[3]  Huen Lee,et al.  Solubilities and Vapor Pressures of the Water + Lithium Bromide + Ethanolamine System , 1996 .

[4]  Y. Kang,et al.  Absorption performance enhancement by nano-particles and chemical surfactants in binary nanofluids , 2007 .

[5]  M. Venegas,et al.  Crystallization as a limit to develop solar air-cooled LiBr–H2O absorption systems using low-grade heat , 2004 .

[6]  William M. Worek,et al.  Adiabatic water absorption properties of an aqueous absorbent at very low pressures in a spray absorber , 2006 .

[7]  Reinhard Radermacher,et al.  Development of an absorption heat pump water heater using an aqueous ternary hydroxide working fluid , 1991 .

[8]  C. A. Infante Ferreira,et al.  Air-cooled LiBr–water absorption chillers for solar air conditioning in extremely hot weathers , 2009 .

[9]  H. Perez-blanco,et al.  Combined heat and mass transfer during bubble absorption in binary solutions , 1997 .

[10]  C. Oliet,et al.  Comparison of the performance of falling film and bubble absorbers for air-cooled absorption systems , 2009 .

[11]  R. Lizarte,et al.  Air conditioning using an air-cooled single effect lithium bromide absorption chiller: Results of a trial conducted in Madrid in August 2005 , 2008 .

[12]  Xiaolin Wang,et al.  Absorption Cooling: A review of Lithium Bromide-water chiller technologies , 2009 .

[13]  A. Lucas,et al.  Vapor Pressures, Densities, and Viscosities of the (Water + Lithium Bromide + Sodium Formate) System and (Water + Lithium Bromide + Potassium Formate) System. , 2003 .

[14]  Thomas L. Merrill Thermally controlled bubble collapse in binary solutions , 2000 .

[15]  R.J. Fiskum,et al.  United States Department of Energy thermally activated heat pump program , 1996, IECEC 96. Proceedings of the 31st Intersociety Energy Conversion Engineering Conference.

[16]  Soteris A. Kalogirou,et al.  Recent Patents in Absorption Cooling Systems , 2008 .

[17]  Srinivas Garimella,et al.  A critical review of models of coupled heat and mass transfer in falling-film absorption , 2001 .

[18]  Yong Tae Kang,et al.  Analytical investigation of two different absorption modes: falling film and bubble types , 2000 .

[19]  Reinhard Radermacher,et al.  Absorption chiller crystallization control strategies for integrated cooling heating and power systems. , 2007 .

[20]  Huen Lee,et al.  Heat and mass transfer of the new libr-based working fluids for absorption heat pump , 2002 .

[21]  M. Izquierdo,et al.  Spray absorbers in absorption systems using lithium nitrate–ammonia solution , 2005 .

[22]  Nathalie Jongen,et al.  LiBr. 2H(2)O Crystallization Inhibition in the Presence of Additives. , 2001, Journal of colloid and interface science.

[23]  Y. Joshi,et al.  Performance analysis of air-cooled microchannel absorber in absorptionbased miniature electronics cooling system , 2008 .

[24]  Tadashi Uemura,et al.  Physical and thermal properties of the water-lithium bromide-lithium nitrate system , 1993 .

[25]  Edward Allan Vineyard,et al.  Performance Evaluation of a 4.5 kW (1.3 Refrigeration Tons) Air-Cooled Lithium Bromide/Water Hot-Water-Fired Absorption Unit , 2007 .

[26]  José Villaseñor,et al.  Performance evaluation and simulation of a new absorbent for an absorption refrigeration system , 2004 .

[27]  Yutaka Kuriyama,et al.  Densities, viscosities, and surface tensions for the two ternary systems H2O+LiBr+LiI and H2O+LiCl+LiNO3 , 1993 .

[28]  W. A. Miller,et al.  The Effect of Roll Waves on the Hydrodynamics of Falling Films Observed in Vertical Column Absorbers , 2001, Advanced Energy Systems.

[29]  Terry A. Ring,et al.  Testing of crystallization inhibitors in industrial LiBr solutions , 2001 .

[30]  R. Reimann,et al.  Air cooled absorption chillers for solar cooling applications , 1982 .

[31]  Colin Ramshaw,et al.  Process intensification : heat and mass transfer characteristics of liquid films on rotating discs , 1999 .

[32]  Christopher M. Fischer,et al.  MINIATURIZATION OF AN AMMONIA-WATER ABSORPTION CYCLE HEAT PUMP USING MICROCHANNELS , 2005 .

[33]  Siyoung Jeong,et al.  Solubilities, Vapor Pressures, and Heat Capacities of the Water + Lithium Bromide + Lithium Nitrate + Lithium Iodide + Lithium Chloride System , 1999 .

[34]  Hyun June Kim,et al.  Heat and mass transfer enhancement of binary nanofluids for H2O/LiBr falling film absorption process , 2008 .

[35]  W. Miller,et al.  The Correlation of Simultaneous Heat and Mass Transfer Experimental Data for Aqueous Lithium Bromide Vertical Falling Film Absorption , 2001 .

[36]  Huen Lee,et al.  Performance evaluation of absorption chiller using LiBr+H2N(CH2)2OH+H2O, LiBr+HO(CH2)3OH+H2O, and LiBr+(HOCH2CH2)2NH+H2O as working fluids , 1999 .

[37]  George O. G. Löf Active solar systems , 1993 .

[38]  Georgios A. Florides,et al.  Design and construction of a LiBr–water absorption machine , 2003 .

[39]  A. Lucas,et al.  Absorption of Water Vapor into New Working Fluids for Absorption Refrigeration Systems , 2007 .

[40]  T. Kashiwagi,et al.  Numerical design of ammonia bubble absorber applying binary nanofluids and surfactants , 2007 .

[41]  G. Grossman,et al.  A computer model for simulation of absorption systems in flexible and modular form , 1987 .

[42]  Omar A. Abdelaziz,et al.  The impact of water flow configuration on crystallisation in LiBr/H 2 O absorption water heater , 2011 .

[43]  Huen Lee,et al.  Physical properties of the lithium bromide + 1,3-propanediol + water system , 1997 .

[44]  Horacio Perez-Blanco,et al.  An experimental study of a vibrating screen as means of absorption enhancement , 2001 .

[45]  Detlef Westphalen,et al.  Developing Air-Cooled LiBr Absorption for Light Commercial Combined Heat and Power Applications , 2006 .

[46]  M. Medrano,et al.  Performance of air-cooled absorption air-conditioning systems working with water-(LiBr + Lil + LiNO3 + LiCl) , 2005 .

[47]  A. Levy,et al.  Spray formation of binary organic solution for an absorption refrigeration system , 2006 .