Particle swarm optimization based load model parameter identification

This paper presents a method for estimating the parameters of dynamic models for induction motor dominating loads. Using particle swarm optimization, the method finds the adequate set of parameters that best fit the sampling data from the measurement for a period of time, minimizing the error of the outputs, active and reactive power demands and satisfying the steady-state error criterion.

[1]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[2]  C. W. Taylor Power System Voltage Stability , 1993 .

[3]  David J. Hill,et al.  Nonlinear dynamic load models with recovery for voltage stability studies , 1993 .

[4]  Wilsun Xu,et al.  Voltage stability analysis using generic dynamic load models , 1994 .

[5]  Peter W. Sauer,et al.  Development and comparative study of induction machine based dynamic P, Q load models , 1995 .

[6]  Russell C. Eberhart,et al.  A new optimizer using particle swarm theory , 1995, MHS'95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science.

[7]  Hsiao-Dong Chiang,et al.  Development of a dynamic ZIP-motor load model from on-line field measurements , 1997 .

[8]  Thierry Van Cutsem,et al.  Voltage Stability of Electric Power Systems , 1998 .

[9]  Keiichiro Yasuda,et al.  A basic study of adaptive particle swarm optimization , 2005 .

[10]  D. Kosterev,et al.  Dynamic Load Models: Where Are We? , 2006, 2005/2006 IEEE/PES Transmission and Distribution Conference and Exhibition.

[11]  Hsiao-Dong Chiang,et al.  Representative static load models for transient stability analysis: development and examination , 2007 .

[12]  Ryan B. Diolata,et al.  Photovoltaic System Allocation Using Discrete Particle Swarm Optimization with Multi-level Quantization , 2009 .

[13]  V. Ajjarapu,et al.  A Novel Parameter Identification Approach via Hybrid Learning for Aggregate Load Modeling , 2009, IEEE Transactions on Power Systems.