Near-Field Microwave Microscopy of Materials Properties

Near-field microwave microscopy has created the opportunity for a new class of electrodynamics experiments of materials. Freed from the constraints of traditional microwave optics, experiments can be carried out at high spatial resolution over a broad frequency range. In addition, the measurements can be done quantitatively so that images of microwave materials properties can be created. We review the five major types of near-field microwave microscopes and discuss our own form of microscopy in detail. Quantitative images of microwave sheet resistance, dielectric constant, and dielectric tunability are presented and discussed. Future prospects for near-field measurements of microwave electrodynamic properties are also presented.

[1]  F. C. Wellstood,et al.  Imaging of microwave permittivity, tunability, and damage recovery in (Ba, Sr)TiO3 thin films , 1999, cond-mat/9910014.

[2]  J. Giapintzakis,et al.  ABSENCE OF NONLINEAR MEISSNER EFFECT IN YBA2CU3O6.95 , 1999 .

[3]  G. Grüner,et al.  Microwave cavity perturbation technique: Part II: Experimental scheme , 1993 .

[4]  Phillips,et al.  Vortex-pair nucleation at defects: A mechanism for anomalous temperature dependence in the superconducting screening length. , 1991, Physical review. B, Condensed matter.

[5]  L. Hao,et al.  Spatially resolved measurements of HTS microwave surface impedance , 1999 .

[6]  R. J. Gutmann,et al.  Microwave Scanning Microscopy for Planar Structure Diagnostics , 1987, 1987 IEEE MTT-S International Microwave Symposium Digest.

[7]  K. Asami The scanning dielectric microscope , 1994 .

[8]  Merz,et al.  Nonequilibrium edge-state transport resolved by far-infrared microscopy. , 1993, Physical review letters.

[9]  E. Tanabe,et al.  A nondestructive method for measuring the complex permittivity of dielectric materials at microwave frequencies using an open transmission line resonator , 1976, IEEE Transactions on Instrumentation and Measurement.

[10]  Eric Betzig,et al.  Collection mode near‐field scanning optical microscopy , 1987 .

[11]  X. Xiang,et al.  Quantitative microwave near-field microscopy of dielectric properties , 1998 .

[12]  F. C. Wellstood,et al.  Surface resistance imaging with a scanning near-field microwave microscope , 1997, cond-mat/9712142.

[13]  Y. Manassen Scanning Probe microscopy and magnetic resonance , 1994 .

[14]  Low Power Superconducting Microwave Applications and Microwave Microscopy , 1998, cond-mat/9808195.

[15]  R. Bosisio,et al.  Paper Sheet Moisture Measurements by Microwave Phase Perturbation Techniques , 1970 .

[16]  F. C. Wellstood,et al.  Microwave near-field imaging of electric fields in a superconducting microstrip resonator , 1998 .

[17]  D. Davidov,et al.  Microwave near-field polarimetry , 1999 .

[18]  Thomas M. Antonsen,et al.  Open-ended coaxial probe for high-temperature and broad-band dielectric measurements , 1999 .

[19]  Vincent M. Hietala,et al.  Confocal resonators for measuring the surface resistance of high‐temperature superconducting films , 1991 .

[20]  Z. Frait,et al.  Local variations of uniaxial anisotropy in thin films , 1960 .

[21]  Paul S. Weiss,et al.  A tunable microwave frequency alternating current scanning tunneling microscope , 1994 .

[22]  A. Pippard The surface impedance of superconductors and normal metals at high frequencies I. Resistance of superconducting tin and mercury at 1200 Mcyc. /sec , 1947, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[23]  P. Wigen,et al.  Observation of ferromagnetic resonance in a microscopic sample using magnetic resonance force microscopy , 1996 .

[24]  J. Booth,et al.  Measurements of the Frequency Dependent Microwave Fluctuation Conductivity of Cuprate Thin Film Superconductors , 1997 .

[25]  F. C. Wellstood,et al.  QUANTITATIVE IMAGING OF SHEET RESISTANCE WITH A SCANNING NEAR-FIELD MICROWAVE MICROSCOPE , 1997, cond-mat/9712171.

[26]  T. Miki,et al.  ESR Microscopic Imaging with Microfabricated Field Gradient Coils , 1987 .

[27]  John C. Slater,et al.  Field strength measurements in resonant cavities , 1952 .

[28]  G. Grüner,et al.  Microwave cavity perturbation technique: Part I: Principles , 1993 .

[29]  Greene,et al.  Ferromagnetic resonance and magnetic homogeneity in a giant-magnetoresistance material La2/3Ba1/3MnO3. , 1995, Physical review. B, Condensed matter.

[30]  R. C. Taber,et al.  A parallel plate resonator technique for microwave loss measurements on superconductors , 1990 .

[31]  F. C. Wellstood,et al.  Quantitative imaging of dielectric permittivity and tunability with a near-field scanning microwave microscope , 2000, cond-mat/0004439.

[32]  W. Denk,et al.  Optical stethoscopy: Image recording with resolution λ/20 , 1984 .

[33]  F. C. Wellstood,et al.  Imaging microwave electric fields using a near-field scanning microwave microscope , 1998 .

[34]  L. A. Bumm,et al.  Small Cavity Nonresonant Tunable Microwave-Frequency Alternating Current Scanning Tunneling Microscope , 1994 .

[35]  Steven M. Anlage,et al.  Near‐field scanning microwave microscope with 100 μm resolution , 1996 .

[37]  E. Synge XXXVIII. A suggested method for extending microscopic resolution into the ultra-microscopic region , 1928 .

[38]  J. Halbritter,et al.  Defects in YBCO relevant for RF superconductivity: T-, f- and H-dependencies , 1999, IEEE Transactions on Applied Superconductivity.

[39]  J. Aitken,et al.  Swept-frequency microwave Q-factor measurement , 1976 .

[40]  T. Datta,et al.  Magnetic penetration depth in high-Tc superconducting Tl2Ca1Ba2Cu2O8−δ single crystals , 1992 .

[41]  J. Borrego,et al.  Measurement of the sheet resistance of doped layers in semiconductors by microwave reflection , 1994 .

[42]  Gough,et al.  Microwave response of anisotropic high-temperature-superconductor crystals. , 1994, Physical review. B, Condensed matter.

[43]  Z. Frait The use of high-frequency modulation in studying ferromagnetic resonance , 1959 .

[44]  S. Wagner,et al.  Resistivity measurement of thin semiconductor films on metallic substrates , 1979 .

[45]  Quantitative topographic imaging using a near-field scanning microwave microscope , 1998, cond-mat/9802139.

[46]  Michael Golosovsky,et al.  Novel millimeter‐wave near‐field resistivity microscope , 1996 .

[47]  Scanning nonlinear dielectric microscope , 1996 .

[48]  R. Greene,et al.  Direct Observation of Microscopic Inhomogeneities with Energy-Dispersive Diffraction of Synchrotron-Produced X-rays , 1994, Science.

[49]  J. Sanny,et al.  Open‐ended coaxial‐line technique for the measurement of the microwave dielectric constant for low‐loss solids and liquids , 1993 .

[50]  G. Grüner,et al.  Microwave cavity perturbation technique: Part III: Applications , 1993 .

[51]  E. Ash,et al.  Super-resolution Aperture Scanning Microscope , 1972, Nature.

[52]  N. Koshizuka,et al.  Advances in Superconductivity XI , 1999 .

[53]  D. Davidov,et al.  Magnetic-field-modulated microwave reflectivity of high- Tc superconductors studied by near-field mm-wave microscopy , 1999 .

[54]  F. Wellstood,et al.  Near-Field Scanning Microwave Microscopy of Superconducting Materials and Devices , 1999 .

[55]  F. Keilmann,et al.  Near-field probing of vibrational absorption for chemical microscopy , 1999, Nature.

[56]  B. J. Feenstra,et al.  Imaging of microwave intermodulation fields in a superconducting microstrip resonator , 1999 .

[57]  B. Batlogg,et al.  Third-order nonlinear microwave response of YBa2Cu3O7−δ thin films and single crystals , 1997 .

[58]  S. Ramo,et al.  Fields and Waves in Communication Electronics , 1966 .

[59]  Massood Tabib-Azar,et al.  Non-destructive characterization of materials by evanescent microwaves , 1993 .

[60]  B. J. Feenstra,et al.  Microwave Nonlinearities in High-Tc Superconductors: The Truth Is out There , 1998, cond-mat/9808194.

[61]  Peter G. Schultz,et al.  Scanning tip microwave near field microscope , 1996 .

[62]  D. Davidov,et al.  A cryogenic microwave scanning near-field probe: Application to study of high-Tc superconductors , 1999 .

[63]  C. A. Bryant,et al.  Noncontact Technique for the Local Measurement of Semiconductor Resistivity , 1965 .

[64]  Daniel Rugar,et al.  Paramagnetic and ferromagnetic resonance imaging with a tip-on-cantilever magnetic resonance force microscope , 1998 .

[65]  V. Talanov,et al.  Measurement of the absolute penetration depth and surface resistance of superconductors and normal metals with the variable spacing parallel plate resonator , 2000 .

[66]  Reza Zoughi,et al.  Preliminary Study of the Influences of Effective Dielectric Constant and Nonuniform Probe Aperture Field Distribution on near Field Microwave Images , 1997 .

[67]  Scanning nonlinear dielectric microscopy with nanometer resolution , 1999 .

[68]  Michael Golosovsky,et al.  A millimeter-wave near-field scanning probe with an optical distance control , 1998 .

[69]  M. Stuchly,et al.  Coaxial Line Reflection Methods for Measuring Dielectric Properties of Biological Substances at Radio and Microwave Frequencies-A Review , 1980, IEEE Transactions on Instrumentation and Measurement.

[70]  F. Keilmann,et al.  Contrast of microwave near-field microscopy , 1997 .

[71]  G. L. James,et al.  Analysis and Design of TE/sub 11/-to-HE/sub 11/ Corrugated Cylindrical Waveguide Mode Converters , 1981 .

[72]  Koji Mizuno,et al.  Experimental demonstration for scanning near-field optical microscopy using a metal micro-slit probe at millimeter wavelengths , 1997 .

[73]  Paul S. Weiss,et al.  A versatile microwave‐frequency‐compatible scanning tunneling microscope , 1993 .

[74]  R. G. Bosisio,et al.  Nondestructive measurements of the resistivity of thin conductive films and the dielectric constant of thin substrates using an open-ended coaxial line , 1992 .

[75]  L. Hao,et al.  Spatially resolved measurements of HTS microwave surface impedance , 1997, IEEE Transactions on Applied Superconductivity.

[76]  R. F. Soohoo,et al.  A Microwave Magnetic Microscope , 1962 .

[77]  E. C. Burdette,et al.  In Vivo Probe Measurement Technique for Determining Dielectric Properties at VHF through Microwave Frequencies , 1980 .

[78]  Theodor W. Hänsch,et al.  Scanning electromagnetic transmission line microscope with sub-wavelength resolution , 1989 .

[79]  John Clarke,et al.  Microwave microscopy using a superconducting quantum interference device , 1995 .

[80]  F. Wellstood,et al.  Scanning microwave microscopy of active superconducting microwave devices , 1997, IEEE Transactions on Applied Superconductivity.