Walsh Series Analysis of the L2-Discrepancyof Symmetrisized Point Sets
暂无分享,去创建一个
[1] H. Davenport. Note on irregularities of distribution , 1956 .
[2] H. Wozniakowski. Average case complexity of multivariate integration , 1991 .
[3] Mean-square discrepancies of the Hammersley and Zaremba sequences for arbitrary radix , 1975 .
[4] Petko D. Proinov. Symmetrization of the van der Corput generalized sequences , 1988 .
[5] M. Skriganov,et al. Explicit constructions in the classical mean squares problem in irregularities of point distribution , 2002 .
[6] S. K. Zaremba,et al. The extreme and L2 discrepancies of some plane sets , 1969 .
[7] K. F. Roth,et al. On irregularities of distribution IV , 1979 .
[8] Harald Niederreiter,et al. Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.
[9] W. R. Wade,et al. Walsh Series, An Introduction to Dyadic Harmonic Analysis , 1990 .
[10] Peter Hellekalek,et al. General discrepancy estimates: the Walsh function system , 1994 .
[11] H. Faure. Discrépance de suites associées à un système de numération (en dimension s) , 1982 .
[12] I. Sobol. On the distribution of points in a cube and the approximate evaluation of integrals , 1967 .
[13] K. F. Roth. On irregularities of distribution , 1954 .
[14] H. Niederreiter. Point sets and sequences with small discrepancy , 1987 .
[15] H. Niederreiter,et al. Digital nets and sequences constructed over finite rings and their application to quasi-Monte Carlo integration , 1996 .
[16] G. Larcher. Digital Point Sets: Analysis and Application , 1998 .