Multipartite Quantum States and their Marginals
暂无分享,去创建一个
[1] H. Weyl. Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen (mit einer Anwendung auf die Theorie der Hohlraumstrahlung) , 1912 .
[2] W. Pauli,et al. Über den Zusammenhang des Abschlusses der Elektronengruppen im Atom mit der Komplexstruktur der Spektren , 1925 .
[3] H. Weyl. The Theory Of Groups And Quantum Mechanics , 1931 .
[4] W. Pauli,et al. Exclusion Principle And Quantum Mechanics , 1947 .
[5] Feller William,et al. An Introduction To Probability Theory And Its Applications , 1950 .
[6] Israel M. Gelfand,et al. Finite-dimensional representations of the group of unimodular matrices , 1950 .
[7] A. Horn. Doubly Stochastic Matrices and the Diagonal of a Rotation Matrix , 1954 .
[8] F D Murnaghan. ON THE ANALYSIS OF THE KRONECKER PRODUCT OF IRREDUCIBLE REPRESENTATIONS OF S(n). , 1955, Proceedings of the National Academy of Sciences of the United States of America.
[9] D. E. Littlewood,et al. Products and Plethysms of Characters with Orthogonal, Symplectic and Symmetric Groups , 1958, Canadian Journal of Mathematics.
[10] B. Kostant. A FORMULA FOR THE MULTIPLICITY OF A WEIGHT. , 1958, Proceedings of the National Academy of Sciences of the United States of America.
[11] E. Wigner,et al. Book Reviews: Group Theory. And Its Application to the Quantum Mechanics of Atomic Spectra , 1959 .
[12] M. Gell-Mann. THE EIGHTFOLD WAY: A THEORY OF STRONG INTERACTION SYMMETRY , 1961 .
[13] Robert Steinberg,et al. A general Clebsch-Gordan theorem , 1961 .
[14] Yuval Ne'eman,et al. DERIVATION OF STRONG INTERACTIONS FROM A GAUGE INVARIANCE , 1961 .
[15] M. Gell-Mann. Symmetries of baryons and mesons , 1962 .
[16] N. Straumann,et al. BRANCHING RULES AND CLEBSCH-GORDAN SERIES OF SEMI-SIMPLE LIE ALGEBRAS , 1965 .
[17] A. J. Coleman. Structure of Fermion Density Matrices. II. Antisymmetrized Geminal Powers , 1965 .
[18] T. Regge,et al. SEMICLASSICAL LIMIT OF RACAH COEFFICIENTS. , 1969 .
[19] V. Strassen. Gaussian elimination is not optimal , 1969 .
[20] K. Dennis,et al. The conditions on the one-matrix for three-body fermion wavefunctions with one-rank equal to six , 1972 .
[21] B. Kostant. On convexity, the Weyl group and the Iwasawa decomposition , 1973 .
[22] E. Lieb,et al. Proof of the strong subadditivity of quantum‐mechanical entropy , 1973 .
[23] F. Grosshans,et al. Observable Groups and Hilbert's Fourteenth Problem , 1973 .
[24] Eugene P. Wigner. Reduction of Direct Products and Restriction of Representations to Subgroups: The Everydays Tasks of the Quantum Theorists , 1973 .
[25] R. Hudson. When is the wigner quasi-probability density non-negative? , 1974 .
[26] Te Sun Han,et al. Linear Dependence Structure of the Entropy Space , 1975, Inf. Control..
[27] E. Lieb. Some Convexity and Subadditivity Properties of Entropy , 1975 .
[28] J. Humphreys,et al. Linear Algebraic Groups , 1975 .
[29] G. Kempf,et al. Instability in invariant theory , 1978, 1807.02890.
[30] E. Lubkin. Entropy of an n‐system from its correlation with a k‐reservoir , 1978 .
[31] I. G. MacDonald,et al. Symmetric functions and Hall polynomials , 1979 .
[32] G. Kempf,et al. The length of vectors in representation spaces , 1979 .
[33] Leslie G. Valiant,et al. Completeness classes in algebra , 1979, STOC.
[34] L. Lovász,et al. Geometric Algorithms and Combinatorial Optimization , 1981 .
[35] Shlomo Sternberg,et al. Geometric quantization and multiplicities of group representations , 1982 .
[36] B. V. Lidskii. Spectral polyhedron of a sum of two Hermitian matrices , 1982 .
[37] S. Sternberg,et al. Convexity properties of the moment mapping , 1982 .
[38] P. McCarthy. GEOMETRIC QUANTIZATION (Oxford Mathematical Monographs) , 1982 .
[39] Michael Atiyah,et al. Convexity and Commuting Hamiltonians , 1982 .
[40] Gert Heckman,et al. Projections of orbits and asymptotic behavior of multiplicities for compact connected Lie groups , 1982 .
[41] Linda Ness,et al. A Stratification of the Null Cone Via the Moment Map , 1984 .
[42] S. Sternberg,et al. A Normal Form for the Moment Map , 1984 .
[43] F. Kirwan. Cohomology of Quotients in Symplectic and Algebraic Geometry. (MN-31), Volume 31 , 1984 .
[44] Frances Kirwan,et al. Convexity properties of the moment mapping, III , 1984 .
[45] S. Sternberg,et al. Symplectic Techniques in Physics , 1984 .
[46] Hanspeter Kraft,et al. Geometrische Methoden in der Invariantentheorie , 1984 .
[47] A. W. Knapp. Representation theory of semisimple groups , 1986 .
[48] M. Brion,et al. Sur l'image de l'application moment , 1987 .
[49] Eugene Lerman,et al. On the Kostant multiplicity formula , 1988 .
[50] A. W. Knapp. Lie groups beyond an introduction , 1988 .
[51] Maassen,et al. Generalized entropic uncertainty relations. , 1988, Physical review letters.
[52] Robert Alicki,et al. Symmetry properties of product states for the system of N n‐level atoms , 1988 .
[53] S. Lloyd,et al. Complexity as thermodynamic depth , 1988 .
[54] A. Zeilinger,et al. Going Beyond Bell’s Theorem , 2007, 0712.0921.
[55] V. Guillemin,et al. Heckman, Kostant, and Steinberg Formulas for Symplectic Manifolds , 1990 .
[56] Joe Harris,et al. Representation Theory: A First Course , 1991 .
[57] Martin E. Dyer. On Counting Lattice Points in Polyhedra , 1991, SIAM J. Comput..
[58] William J. Cook,et al. On integer points in polyhedra , 1992, Comb..
[59] Topological lattice models in four-dimensions , 1992, hep-th/9205090.
[60] Page,et al. Average entropy of a subsystem. , 1993, Physical review letters.
[61] D. Petz,et al. Quantum Entropy and Its Use , 1993 .
[62] Alexander I. Barvinok,et al. A polynomial time algorithm for counting integral points in polyhedra when the dimension is fixed , 1993, Proceedings of 1993 IEEE 34th Annual Foundations of Computer Science.
[63] Reyer Sjamaar. Holomorphic slices, symplectic reduction and multiplicities of representations , 1993 .
[64] Habib,et al. Coherent states via decoherence. , 1993, Physical review letters.
[65] Reyer Sjamaar. Convexity Properties of the Moment Mapping Re-examined☆ , 1994 .
[66] Eckhard Meinrenken,et al. On Riemann-Roch Formulas for Multiplicities , 1994, alg-geom/9405014.
[67] V. Turaev. Quantum Invariants of Knots and 3-Manifolds , 1994, hep-th/9409028.
[68] Hanspeter Kraft,et al. CLASSICAL INVARIANT THEORY , 1996 .
[69] Eugene Lerman,et al. Symplectic Fibrations And Multiplicity Diagrams , 1996 .
[70] Andrei Okounkov,et al. Brunn–Minkowski inequality for multiplicities , 1996 .
[71] Vincent Loechner,et al. Parametric Analysis of Polyhedral Iteration Spaces , 1996, Proceedings of International Conference on Application Specific Systems, Architectures and Processors: ASAP '96.
[72] Zhen Zhang,et al. A non-Shannon-type conditional inequality of information quantities , 1997, IEEE Trans. Inf. Theory.
[73] Daniel Gottesman,et al. Stabilizer Codes and Quantum Error Correction , 1997, quant-ph/9705052.
[74] Martin E. Dyer,et al. On Barvinok's Algorithm for Counting Lattice Points in Fixed Dimension , 1997, Math. Oper. Res..
[75] Martin E. Dyer,et al. Sampling contingency tables , 1997 .
[76] Carlo Rovelli,et al. 'Sum over surfaces' form of loop quantum gravity , 1997 .
[77] John J. Cannon,et al. The Magma Algebra System I: The User Language , 1997, J. Symb. Comput..
[78] Raymond W. Yeung,et al. A framework for linear information inequalities , 1997, IEEE Trans. Inf. Theory.
[79] Justin Roberts. Classical 6j-symbols and the tetrahedron , 1998 .
[80] Zhen Zhang,et al. On Characterization of Entropy Function via Information Inequalities , 1998, IEEE Trans. Inf. Theory.
[81] M. Nemes,et al. QUANTUM DYNAMICAL MANIFESTATION OF CHAOTIC BEHAVIOR IN THE PROCESS OF ENTANGLEMENT , 1998 .
[82] A. Klyachko. Stable bundles, representation theory and Hermitian operators , 1998 .
[83] Michèle Vergne. Quantization of algebraic cones and Vogan’s conjecture , 1998 .
[84] Arkady Berenstein,et al. Coadjoint orbits, moment polytopes, and the Hilbert-Mumford criterion , 1998 .
[85] Peter Littelmann,et al. Cones, crystals, and patterns , 1998 .
[86] W. Fulton. Eigenvalues of sums of hermitian matrices , 1998 .
[87] A. Barvinok,et al. An Algorithmic Theory of Lattice Points in Polyhedra , 1999 .
[88] Charles H. Bennett,et al. Exact and asymptotic measures of multipartite pure-state entanglement , 1999, Physical Review A.
[89] W. Fulton. Eigenvalues, invariant factors, highest weights, and Schubert calculus , 1999, math/9908012.
[90] Michel Brion. On the general faces of the moment polytope , 1999 .
[91] M. Horodecki,et al. Reduction criterion of separability and limits for a class of distillation protocols , 1999 .
[92] A. Knutson. The symplectic and algebraic geometry of Horn's problem , 1999, math/9911088.
[93] Andrei Zelevinsky,et al. Tensor product multiplicities, canonical bases and totally positive varieties , 1999, math/9912012.
[94] M. Nielsen. Conditions for a Class of Entanglement Transformations , 1998, quant-ph/9811053.
[95] P. Olver. Classical Invariant Theory , 1999 .
[96] Jeroen van de Graaf,et al. Cryptographic Distinguishability Measures for Quantum-Mechanical States , 1997, IEEE Trans. Inf. Theory.
[97] T. Tao,et al. Honeycombs and sums of Hermitian matrices , 2000, math/0009048.
[98] H. Sommers,et al. Induced measures in the space of mixed quantum states , 2000, quant-ph/0012101.
[99] B. Judd,et al. Reduced Density Matrices: Coulson's Challenge , 2000 .
[100] P. Bertet,et al. Step-by-step engineered multiparticle entanglement , 2000, Science.
[101] J. Cirac,et al. Three qubits can be entangled in two inequivalent ways , 2000, quant-ph/0005115.
[102] M. Horodecki,et al. Separability of n-particle mixed states: necessary and sufficient conditions in terms of linear maps , 2000, quant-ph/0006071.
[103] R. Werner,et al. Estimating the spectrum of a density operator , 2001, quant-ph/0102027.
[104] Ketan Mulmuley,et al. Geometric Complexity Theory I: An Approach to the P vs. NP and Related Problems , 2002, SIAM J. Comput..
[105] G Weihs,et al. Experimental demonstration of four-photon entanglement and high-fidelity teleportation. , 2001, Physical review letters.
[106] Sufficient conditions for three-particle entanglement and their tests in recent experiments , 2001, quant-ph/0107072.
[107] R. Cleve,et al. Quantum fingerprinting. , 2001, Physical review letters.
[108] H. Briegel,et al. Persistent entanglement in arrays of interacting particles. , 2000, Physical review letters.
[109] A. J. Coleman. Reduced density matrices—Then and now* , 2001 .
[110] T. Tao,et al. The honeycomb model of _{}(ℂ) tensor products II: Puzzles determine facets of the Littlewood-Richardson cone , 2001, math/0107011.
[111] M. Ruskai. Inequalities for quantum entropy: A review with conditions for equality , 2002, quant-ph/0205064.
[112] Raymond W. Yeung,et al. On a relation between information inequalities and group theory , 2002, IEEE Trans. Inf. Theory.
[113] L. Freidel,et al. Asymptotics of 6j and 10j symbols , 2002, hep-th/0209134.
[114] John M. Lee. Introduction to Smooth Manifolds , 2002 .
[115] Alexander Klyachko. Coherent states, entanglement, and geometric invariant theory , 2002 .
[116] C. M. Steele,et al. Asymptotics of relativistic spin networks , 2002, gr-qc/0209023.
[117] M. Franz. Moment Polytopes of Projective G-Varieties and Tensor Products of Symmetric Group Representations , 2002 .
[118] B. Moor,et al. Four qubits can be entangled in nine different ways , 2001, quant-ph/0109033.
[119] D. Meyer,et al. Global entanglement in multiparticle systems , 2001, quant-ph/0108104.
[120] Masahito Hayashi,et al. Quantum universal variable-length source coding , 2002, quant-ph/0202001.
[121] Etienne Rassart,et al. A vector partition function for the multiplicities of sl_k(C) , 2003, math/0307227.
[122] G. Vidal. Efficient classical simulation of slightly entangled quantum computations. , 2003, Physical review letters.
[123] A. Miyake. Classification of multipartite entangled states by multidimensional determinants , 2002, quant-ph/0206111.
[124] Gavin K. Brennen. An observable measure of entanglement for pure states of multi-qubit systems , 2003, Quantum Inf. Comput..
[125] B. Moor,et al. Normal forms and entanglement measures for multipartite quantum states , 2001, quant-ph/0105090.
[126] I. Dolgachev,et al. Lectures on Invariant Theory , 2003 .
[127] Nicholas Pippenger,et al. The inequalities of quantum information theory , 2003, IEEE Trans. Inf. Theory.
[128] A complete set of covariants of the four qubit system , 2003, quant-ph/0304026.
[129] T. H. Chan,et al. Balanced information inequalities , 2003, IEEE Trans. Inf. Theory.
[130] A. Sudbery,et al. One-qubit reduced states of a pure many-qubit state: polygon inequalities. , 2002, Physical review letters.
[131] Lorenza Viola,et al. A subsystem-independent generalization of entanglement. , 2004, Physical review letters.
[132] E. Lerman. Gradient flow of the norm squared of a moment map , 2004, math/0410568.
[133] Sergey Bravyi. Requirements for copatibility between local and multipartite quantum states , 2004, Quantum Inf. Comput..
[134] M. S. Leifer,et al. Measuring polynomial invariants of multiparty quantum states , 2003, quant-ph/0308008.
[135] Guang-Can Guo,et al. Compatible conditions, entanglement, and invariants , 2004 .
[136] A. Winter,et al. Randomizing Quantum States: Constructions and Applications , 2003, quant-ph/0307104.
[137] A. Klyachko. QUANTUM MARGINAL PROBLEM AND REPRESENTATIONS OF THE SYMMETRIC GROUP , 2004, quant-ph/0409113.
[138] S. Lloyd,et al. Quantum-Enhanced Measurements: Beating the Standard Quantum Limit , 2004, Science.
[139] Localization for the norm-square of the moment map and the two-dimensional Yang-Mills integral , 2004, math/0404413.
[140] D. Leibfried,et al. Toward Heisenberg-Limited Spectroscopy with Multiparticle Entangled States , 2004, Science.
[141] Renato Renner,et al. Security of quantum key distribution , 2005, Ausgezeichnete Informatikdissertationen.
[142] D. M. Appleby. Symmetric informationally complete–positive operator valued measures and the extended Clifford group , 2005 .
[143] D. Bacon,et al. The Quantum Schur Transform: I. Efficient Qudit Circuits , 2005, quant-ph/0601001.
[144] A. Harrow. Applications of coherent classical communication and the schur transform to quantum information theory , 2005, quant-ph/0512255.
[145] Michael A. Nielsen,et al. A simple proof of the strong subadditivity inequality , 2005, Quantum Inf. Comput..
[146] Hans J. Briegel,et al. Multipartite entanglement in spin chains , 2005, quant-ph/0502160.
[147] A. J. Short,et al. Entanglement and the foundations of statistical mechanics , 2005 .
[148] Xiao-Gang Wen,et al. String-net condensation: A physical mechanism for topological phases , 2004, cond-mat/0404617.
[149] J. Eisert,et al. Multi-particle entanglement , 2005 .
[150] P. Hayden,et al. Quantum state transformations and the Schubert calculus , 2004, quant-ph/0410052.
[151] A. Osterloh,et al. Constructing N-qubit entanglement monotones from antilinear operators (4 pages) , 2004, quant-ph/0410102.
[152] Matthias Christandl,et al. On Nonzero Kronecker Coefficients and their Consequences for Spectra , 2005 .
[153] Charles Cochet. Vector partition function and representation theory , 2005 .
[154] Victor Guillemin,et al. Convexity properties of Hamiltonian group actions , 2005 .
[155] A. Winter,et al. A New Inequality for the von Neumann Entropy , 2004, quant-ph/0406162.
[156] Andrew J. Sommese,et al. The numerical solution of systems of polynomials - arising in engineering and science , 2005 .
[157] F. Verstraete,et al. Matrix product states represent ground states faithfully , 2005, cond-mat/0505140.
[158] A. Osterloh,et al. ENTANGLEMENT MONOTONES AND MAXIMALLY ENTANGLED STATES IN MULTIPARTITE QUBIT SYSTEMS , 2005, quant-ph/0506073.
[159] D. Bacon,et al. Efficient quantum circuits for Schur and Clebsch-Gordan transforms. , 2004, Physical review letters.
[160] Matthias Christandl,et al. The Spectra of Quantum States and the Kronecker Coefficients of the Symmetric Group , 2006 .
[161] Charles Cochet,et al. Volume Computation for Polytopes and Partition Functions for Classical Root Systems , 2006, Discret. Comput. Geom..
[162] Claudio Procesi,et al. Lie Groups: An Approach through Invariants and Representations , 2006 .
[163] D. Gross. Hudson's theorem for finite-dimensional quantum systems , 2006, quant-ph/0602001.
[164] Finite Phase Space Methods in Quantum Information , 2006 .
[165] Yi-Kai Liu. Consistency of Local Density Matrices Is QMA-Complete , 2006, APPROX-RANDOM.
[166] Vincent Loechner,et al. Counting Integer Points in Parametric Polytopes Using Barvinok's Rational Functions , 2007, Algorithmica.
[167] Hariharan Narayanan. On the complexity of computing Kostka numbers and Littlewood-Richardson coefficients , 2006 .
[168] A. Winter,et al. Aspects of Generic Entanglement , 2004, quant-ph/0407049.
[169] M. Ruskai. Another Short and Elementary Proof of Strong Subadditivity of Quantum Entropy , 2006, quant-ph/0604206.
[170] Jesús A. De Loera,et al. On the Computation of Clebsch–Gordan Coefficients and the Dilation Effect , 2006, Exp. Math..
[171] A. Klyachko. Quantum marginal problem and N-representability , 2005, quant-ph/0511102.
[172] Oleg Chterental,et al. Normal Forms and Tensor Ranks of Pure States of Four Qubits , 2006 .
[173] S. Lloyd. Excuse our ignorance , 2006 .
[174] Koenraad M.R. Audenaert,et al. Subadditivity of q-entropies for q>1 , 2007, 0705.1276.
[175] Mary Beth Ruskai,et al. Connecting N-representability to Weyl's problem: the one-particle density matrix for N = 3 and R = 6 , 2007, 0706.1855.
[176] Ketan Mulmuley,et al. Geometric Complexity Theory VI: the flip via saturated and positive integer programming in representation theory and algebraic geometry , 2007, ArXiv.
[177] P. Hayden,et al. Black holes as mirrors: Quantum information in random subsystems , 2007, 0708.4025.
[178] Hua Li,et al. On Connections between Group Homomorphisms and the Ingleton Inequality , 2007, 2007 IEEE International Symposium on Information Theory.
[179] Thierry Paul,et al. Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.
[180] Bernd Sturmfels,et al. Hyperdeterminantal relations among symmetric principal minors , 2006, math/0604374.
[181] F. Kirwan,et al. Towards non-reductive geometric invariant theory , 2007, math/0703131.
[182] Matthias Christandl,et al. One-and-a-Half Quantum de Finetti Theorems , 2007 .
[183] Nicolas Ressayre,et al. Geometric invariant theory and the generalized eigenvalue problem , 2007, 0704.2127.
[184] David Gross,et al. Non-negative Wigner functions in prime dimensions , 2007 .
[185] Matthias Christandl,et al. Quantum computational complexity of the N-representability problem: QMA complete. , 2007, Physical review letters.
[186] Frantisek Matús,et al. Infinitely Many Information Inequalities , 2007, 2007 IEEE International Symposium on Information Theory.
[187] A. Klyachko,et al. The Pauli Principle Revisited , 2008, 0802.0918.
[188] Masahito Hayashi,et al. Universal Approximation of Multi-copy States and Universal Quantum Lossless Data Compression , 2008, 0806.1091.
[189] Ketan Mulmuley,et al. Geometric Complexity Theory II: Towards Explicit Obstructions for Embeddings among Class Varieties , 2006, SIAM J. Comput..
[190] Ben Ibinson. Quantum information and entropy , 2008 .
[191] Jens Eisert,et al. Quantum margulis expanders , 2007, Quantum Inf. Comput..
[192] Ana Cannas da Silva,et al. Lectures on Symplectic Geometry , 2008 .
[193] S. Boixo,et al. Operational interpretation for global multipartite entanglement. , 2007, Physical review letters.
[194] G. Tóth,et al. Entanglement detection , 2008, 0811.2803.
[195] Peter Bürgisser,et al. The complexity of computing Kronecker coefficients , 2008 .
[196] J. Luque,et al. Invariants des hypermatrices , 2008 .
[197] A. Osterloh. Classification of qubit entanglement: SL(2,ℂ) versus SU(2) invariance , 2008, 0809.2055.
[198] Paradan's wall crossing formula for partition functions and Khovanski-Pukhlikov differential operator , 2008, 0803.2810.
[199] R. Gurău,et al. The Ponzano–Regge Asymptotic of the 6j Symbol: An Elementary Proof , 2008, 0808.3533.
[200] Stephen P. Jordan,et al. Fast quantum algorithms for approximating some irreducible representations of groups , 2008, 0811.0562.
[201] Thomas Bliem. On weight multiplicities of complex simple Lie algebras , 2008 .
[202] M. Altunbulak,et al. THE PAULI PRINCIPLE, REPRESENTATION THEORY, AND GEOMETRY OF FLAG VARIETIES , 2008 .
[203] A. Klyachko. Dynamic symmetry approach to entanglement , 2008, 0802.4008.
[204] A. Knutson. SCHUBERT CALCULUS AND QUANTUM INFORMATION , 2009 .
[205] Chennat Gopalakrishnan. On Entropy , 2009 .
[206] G. James,et al. The Representation Theory of the Symmetric Group , 2009 .
[207] A. Klyachko. The Pauli exclusion principle and beyond , 2009, 0904.2009.
[208] Matthias Christandl,et al. Postselection technique for quantum channels with applications to quantum cryptography. , 2008, Physical review letters.
[209] L. Lamata,et al. Operational families of entanglement classes for symmetric N-qubit States. , 2009, Physical review letters.
[210] E. Effros. A matrix convexity approach to some celebrated quantum inequalities , 2008, Proceedings of the National Academy of Sciences.
[211] On polynomial invariants of several qubits , 2008, 0804.1661.
[212] Velleda Baldoni,et al. Discrete series representations and K mulltiplicities for U(p,q): user's guide , 2010 .
[213] R. Renner,et al. The uncertainty principle in the presence of quantum memory , 2009, 0909.0950.
[214] P. Selinger. A Survey of Graphical Languages for Monoidal Categories , 2009, 0908.3347.
[215] M. Brion. Introduction to actions of algebraic groups , 2010 .
[216] B. Coecke. Quantum picturalism , 2009, 0908.1787.
[217] Thomas Bliem,et al. Chopped and sliced cones and representations of Kac–Moody algebras , 2009, 0902.1810.
[218] Marcus Huber,et al. Detection of high-dimensional genuine multipartite entanglement of mixed states. , 2009, Physical review letters.
[219] Renato Renner,et al. Simplifying information-theoretic arguments by post-selection , 2010, Quantum Cryptography and Computing.
[220] Matthias Christandl,et al. Highly entangled states with almost no secrecy. , 2010, Physical review letters.
[221] M. Vergne,et al. Hamiltonian manifolds and moment map , 2011 .
[222] Matthias Christandl,et al. Nonvanishing of Kronecker coefficients for rectangular shapes , 2009, 0910.4512.
[223] N. Wallach,et al. Necessary and sufficient conditions for local manipulation of multipartite pure quantum states , 2011, 1103.5096.
[224] Guillaume Aubrun,et al. Entanglement Thresholds for Random Induced States , 2011, 1106.2264.
[225] V. Vedral,et al. Unifying Typical Entanglement and Coin Tossing: on Randomization in Probabilistic Theories , 2011, 1107.6029.
[226] J. M. Landsberg,et al. An Overview of Mathematical Issues Arising in the Geometric Complexity Theory Approach to VP≠VNP , 2009, SIAM J. Comput..
[227] T. Monz,et al. 14-Qubit entanglement: creation and coherence. , 2010, Physical review letters.
[228] J. Siewert,et al. Polynomial invariants for discrimination and classification of four-qubit entanglement , 2011, 1101.5558.
[229] Peter Bürgisser,et al. Geometric complexity theory and tensor rank , 2010, STOC '11.
[230] N. Ressayre. Geometric Invariant Theory and Generalized Eigenvalue Problem II , 2011 .
[231] Vincenzo Aquilanti,et al. Semiclassical mechanics of the Wigner 6j-symbol , 2010, 1009.2811.
[232] J. Emerson,et al. Corrigendum: Negative quasi-probability as a resource for quantum computation , 2012, 1201.1256.
[233] Laura Mančinska,et al. Everything You Always Wanted to Know About LOCC (But Were Afraid to Ask) , 2012, 1210.4583.
[234] A. Osterloh,et al. Multipartite-entanglement monotones and polynomial invariants , 2011, 1105.1556.
[235] Ion Nechita,et al. The absolute positive partial transpose property for random induced states , 2011, 1108.1935.
[236] Michael Walter,et al. Computing Multiplicities of Lie Group Representations , 2012, 2012 IEEE 53rd Annual Symposium on Foundations of Computer Science.
[237] K. Mulmuley,et al. Geometric complexity theory III: on deciding nonvanishing of a Littlewood–Richardson coefficient , 2012 .
[238] Jesús A. De Loera,et al. Software for exact integration of polynomials over polyhedra , 2012, ACCA.
[239] Andreas J. Winter,et al. Infinitely Many Constrained Inequalities for the von Neumann Entropy , 2011, IEEE Transactions on Information Theory.
[240] J Eisert,et al. Positive Wigner functions render classical simulation of quantum computation efficient. , 2012, Physical review letters.
[241] Nathan Wiebe,et al. Efficient simulation scheme for a class of quantum optics experiments with non-negative Wigner representation , 2012, 1210.1783.
[242] Phase transitions for random states and a semicircle law for the partial transpose , 2011, 1112.4582.
[243] M. Kus,et al. Critical sets of the total variance can detect all stochastic local operations and classical communication classes of multiparticle entanglement , 2012 .
[244] A. Serafini,et al. Measuring Gaussian quantum information and correlations using the Rényi entropy of order 2. , 2012, Physical review letters.
[245] Michael Walter,et al. Stabilizer information inequalities from phase space distributions , 2013, ArXiv.
[246] Alexander A. Klyachko,et al. The Pauli principle and magnetism , 2013, 1311.5999.
[247] Yunshu Liu. Non-Shannon Information Inequalities in Four Random Variables , 2013 .
[248] Marcus Huber,et al. Structure of multidimensional entanglement in multipartite systems. , 2012, Physical review letters.
[249] Florian Mintert,et al. Hierarchies of multipartite entanglement. , 2013, Physical review letters.
[250] Matthias Christandl,et al. Pinning of fermionic occupation numbers. , 2012, Physical review letters.
[251] Frantisek Matús,et al. The Quantum Entropy Cone of Stabiliser States , 2013, TQC.
[252] J. Niel de Beaudrap,et al. A linearized stabilizer formalism for systems of finite dimension , 2011, Quantum Inf. Comput..
[253] Matthias Christandl,et al. Entanglement Polytopes: Multiparticle Entanglement from Single-Particle Information , 2012, Science.
[254] Marcus Huber,et al. Entropy vector formalism and the structure of multidimensional entanglement in multipartite systems , 2013, 1307.3541.
[255] Andreas J. Winter,et al. The structure of Rényi entropic inequalities , 2012, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[256] M. Walter,et al. When is a pure state of three qubits determined by its single-particle reduced density matrices? , 2012, 1207.3849.
[257] Misha Gromov,et al. In a Search for a Structure, Part 1: On Entropy , 2013 .
[258] C. L. Benavides-Riveros,et al. Quasipinning and entanglement in the lithium isoelectronic series , 2013, 1306.6528.
[259] A. Borodin,et al. Integrable probability: From representation theory to Macdonald processes , 2013, 1310.8007.
[260] Michal Oszmaniec,et al. Convexity of momentum map, Morse index, and quantum entanglement , 2014 .
[261] Gábor Székelyhidi. Moment maps and geometric invariant theory , 2014 .
[262] Shrawan Kumar,et al. A study of the representations supported by the orbit closure of the determinant , 2011, Compositio Mathematica.
[263] Matthias Christandl,et al. Eigenvalue Distributions of Reduced Density Matrices , 2012, 1204.0741.
[264] R. Konig,et al. The Entropy Power Inequality for Quantum Systems , 2012, IEEE Transactions on Information Theory.
[265] Joseph M. Renes,et al. Lower Bounds for Quantum Parameter Estimation , 2013, IEEE Transactions on Information Theory.
[266] Richard Kueng,et al. Qubit stabilizer states are complex projective 3-designs , 2015, ArXiv.
[267] Greta Panova,et al. On the complexity of computing Kronecker coefficients , 2014, computational complexity.
[268] Hua Sun,et al. Index Coding Capacity: How Far Can One Go With Only Shannon Inequalities? , 2013, IEEE Transactions on Information Theory.
[269] Victor Veitch,et al. Contextuality Supplies the Magic for Quantum Computation , 2015, 2015 IEEE International Symposium on Multiple-Valued Logic.
[270] Joel W. Robbin,et al. The Moment-Weight Inequality and the Hilbert–Mumford Criterion , 2013, Lecture Notes in Mathematics.