Multipartite Quantum States and their Marginals

Subsystems of composite quantum systems are described by reduced density matrices, or quantum marginals. Important physical properties often do not depend on the whole wave function but rather only on the marginals. Not every collection of reduced density matrices can arise as the marginals of a quantum state. Instead, there are profound compatibility conditions -- such as Pauli's exclusion principle or the monogamy of quantum entanglement -- which fundamentally influence the physics of many-body quantum systems and the structure of quantum information. The aim of this thesis is a systematic and rigorous study of the general relation between multipartite quantum states, i.e., states of quantum systems that are composed of several subsystems, and their marginals. In the first part, we focus on the one-body marginals of multipartite quantum states; in the second part, we study general quantum marginals from the perspective of entropy.

[1]  H. Weyl Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen (mit einer Anwendung auf die Theorie der Hohlraumstrahlung) , 1912 .

[2]  W. Pauli,et al.  Über den Zusammenhang des Abschlusses der Elektronengruppen im Atom mit der Komplexstruktur der Spektren , 1925 .

[3]  H. Weyl The Theory Of Groups And Quantum Mechanics , 1931 .

[4]  W. Pauli,et al.  Exclusion Principle And Quantum Mechanics , 1947 .

[5]  Feller William,et al.  An Introduction To Probability Theory And Its Applications , 1950 .

[6]  Israel M. Gelfand,et al.  Finite-dimensional representations of the group of unimodular matrices , 1950 .

[7]  A. Horn Doubly Stochastic Matrices and the Diagonal of a Rotation Matrix , 1954 .

[8]  F D Murnaghan ON THE ANALYSIS OF THE KRONECKER PRODUCT OF IRREDUCIBLE REPRESENTATIONS OF S(n). , 1955, Proceedings of the National Academy of Sciences of the United States of America.

[9]  D. E. Littlewood,et al.  Products and Plethysms of Characters with Orthogonal, Symplectic and Symmetric Groups , 1958, Canadian Journal of Mathematics.

[10]  B. Kostant A FORMULA FOR THE MULTIPLICITY OF A WEIGHT. , 1958, Proceedings of the National Academy of Sciences of the United States of America.

[11]  E. Wigner,et al.  Book Reviews: Group Theory. And Its Application to the Quantum Mechanics of Atomic Spectra , 1959 .

[12]  M. Gell-Mann THE EIGHTFOLD WAY: A THEORY OF STRONG INTERACTION SYMMETRY , 1961 .

[13]  Robert Steinberg,et al.  A general Clebsch-Gordan theorem , 1961 .

[14]  Yuval Ne'eman,et al.  DERIVATION OF STRONG INTERACTIONS FROM A GAUGE INVARIANCE , 1961 .

[15]  M. Gell-Mann Symmetries of baryons and mesons , 1962 .

[16]  N. Straumann,et al.  BRANCHING RULES AND CLEBSCH-GORDAN SERIES OF SEMI-SIMPLE LIE ALGEBRAS , 1965 .

[17]  A. J. Coleman Structure of Fermion Density Matrices. II. Antisymmetrized Geminal Powers , 1965 .

[18]  T. Regge,et al.  SEMICLASSICAL LIMIT OF RACAH COEFFICIENTS. , 1969 .

[19]  V. Strassen Gaussian elimination is not optimal , 1969 .

[20]  K. Dennis,et al.  The conditions on the one-matrix for three-body fermion wavefunctions with one-rank equal to six , 1972 .

[21]  B. Kostant On convexity, the Weyl group and the Iwasawa decomposition , 1973 .

[22]  E. Lieb,et al.  Proof of the strong subadditivity of quantum‐mechanical entropy , 1973 .

[23]  F. Grosshans,et al.  Observable Groups and Hilbert's Fourteenth Problem , 1973 .

[24]  Eugene P. Wigner Reduction of Direct Products and Restriction of Representations to Subgroups: The Everydays Tasks of the Quantum Theorists , 1973 .

[25]  R. Hudson When is the wigner quasi-probability density non-negative? , 1974 .

[26]  Te Sun Han,et al.  Linear Dependence Structure of the Entropy Space , 1975, Inf. Control..

[27]  E. Lieb Some Convexity and Subadditivity Properties of Entropy , 1975 .

[28]  J. Humphreys,et al.  Linear Algebraic Groups , 1975 .

[29]  G. Kempf,et al.  Instability in invariant theory , 1978, 1807.02890.

[30]  E. Lubkin Entropy of an n‐system from its correlation with a k‐reservoir , 1978 .

[31]  I. G. MacDonald,et al.  Symmetric functions and Hall polynomials , 1979 .

[32]  G. Kempf,et al.  The length of vectors in representation spaces , 1979 .

[33]  Leslie G. Valiant,et al.  Completeness classes in algebra , 1979, STOC.

[34]  L. Lovász,et al.  Geometric Algorithms and Combinatorial Optimization , 1981 .

[35]  Shlomo Sternberg,et al.  Geometric quantization and multiplicities of group representations , 1982 .

[36]  B. V. Lidskii Spectral polyhedron of a sum of two Hermitian matrices , 1982 .

[37]  S. Sternberg,et al.  Convexity properties of the moment mapping , 1982 .

[38]  P. McCarthy GEOMETRIC QUANTIZATION (Oxford Mathematical Monographs) , 1982 .

[39]  Michael Atiyah,et al.  Convexity and Commuting Hamiltonians , 1982 .

[40]  Gert Heckman,et al.  Projections of orbits and asymptotic behavior of multiplicities for compact connected Lie groups , 1982 .

[41]  Linda Ness,et al.  A Stratification of the Null Cone Via the Moment Map , 1984 .

[42]  S. Sternberg,et al.  A Normal Form for the Moment Map , 1984 .

[43]  F. Kirwan Cohomology of Quotients in Symplectic and Algebraic Geometry. (MN-31), Volume 31 , 1984 .

[44]  Frances Kirwan,et al.  Convexity properties of the moment mapping, III , 1984 .

[45]  S. Sternberg,et al.  Symplectic Techniques in Physics , 1984 .

[46]  Hanspeter Kraft,et al.  Geometrische Methoden in der Invariantentheorie , 1984 .

[47]  A. W. Knapp Representation theory of semisimple groups , 1986 .

[48]  M. Brion,et al.  Sur l'image de l'application moment , 1987 .

[49]  Eugene Lerman,et al.  On the Kostant multiplicity formula , 1988 .

[50]  A. W. Knapp Lie groups beyond an introduction , 1988 .

[51]  Maassen,et al.  Generalized entropic uncertainty relations. , 1988, Physical review letters.

[52]  Robert Alicki,et al.  Symmetry properties of product states for the system of N n‐level atoms , 1988 .

[53]  S. Lloyd,et al.  Complexity as thermodynamic depth , 1988 .

[54]  A. Zeilinger,et al.  Going Beyond Bell’s Theorem , 2007, 0712.0921.

[55]  V. Guillemin,et al.  Heckman, Kostant, and Steinberg Formulas for Symplectic Manifolds , 1990 .

[56]  Joe Harris,et al.  Representation Theory: A First Course , 1991 .

[57]  Martin E. Dyer On Counting Lattice Points in Polyhedra , 1991, SIAM J. Comput..

[58]  William J. Cook,et al.  On integer points in polyhedra , 1992, Comb..

[59]  Topological lattice models in four-dimensions , 1992, hep-th/9205090.

[60]  Page,et al.  Average entropy of a subsystem. , 1993, Physical review letters.

[61]  D. Petz,et al.  Quantum Entropy and Its Use , 1993 .

[62]  Alexander I. Barvinok,et al.  A polynomial time algorithm for counting integral points in polyhedra when the dimension is fixed , 1993, Proceedings of 1993 IEEE 34th Annual Foundations of Computer Science.

[63]  Reyer Sjamaar Holomorphic slices, symplectic reduction and multiplicities of representations , 1993 .

[64]  Habib,et al.  Coherent states via decoherence. , 1993, Physical review letters.

[65]  Reyer Sjamaar Convexity Properties of the Moment Mapping Re-examined☆ , 1994 .

[66]  Eckhard Meinrenken,et al.  On Riemann-Roch Formulas for Multiplicities , 1994, alg-geom/9405014.

[67]  V. Turaev Quantum Invariants of Knots and 3-Manifolds , 1994, hep-th/9409028.

[68]  Hanspeter Kraft,et al.  CLASSICAL INVARIANT THEORY , 1996 .

[69]  Eugene Lerman,et al.  Symplectic Fibrations And Multiplicity Diagrams , 1996 .

[70]  Andrei Okounkov,et al.  Brunn–Minkowski inequality for multiplicities , 1996 .

[71]  Vincent Loechner,et al.  Parametric Analysis of Polyhedral Iteration Spaces , 1996, Proceedings of International Conference on Application Specific Systems, Architectures and Processors: ASAP '96.

[72]  Zhen Zhang,et al.  A non-Shannon-type conditional inequality of information quantities , 1997, IEEE Trans. Inf. Theory.

[73]  Daniel Gottesman,et al.  Stabilizer Codes and Quantum Error Correction , 1997, quant-ph/9705052.

[74]  Martin E. Dyer,et al.  On Barvinok's Algorithm for Counting Lattice Points in Fixed Dimension , 1997, Math. Oper. Res..

[75]  Martin E. Dyer,et al.  Sampling contingency tables , 1997 .

[76]  Carlo Rovelli,et al.  'Sum over surfaces' form of loop quantum gravity , 1997 .

[77]  John J. Cannon,et al.  The Magma Algebra System I: The User Language , 1997, J. Symb. Comput..

[78]  Raymond W. Yeung,et al.  A framework for linear information inequalities , 1997, IEEE Trans. Inf. Theory.

[79]  Justin Roberts Classical 6j-symbols and the tetrahedron , 1998 .

[80]  Zhen Zhang,et al.  On Characterization of Entropy Function via Information Inequalities , 1998, IEEE Trans. Inf. Theory.

[81]  M. Nemes,et al.  QUANTUM DYNAMICAL MANIFESTATION OF CHAOTIC BEHAVIOR IN THE PROCESS OF ENTANGLEMENT , 1998 .

[82]  A. Klyachko Stable bundles, representation theory and Hermitian operators , 1998 .

[83]  Michèle Vergne Quantization of algebraic cones and Vogan’s conjecture , 1998 .

[84]  Arkady Berenstein,et al.  Coadjoint orbits, moment polytopes, and the Hilbert-Mumford criterion , 1998 .

[85]  Peter Littelmann,et al.  Cones, crystals, and patterns , 1998 .

[86]  W. Fulton Eigenvalues of sums of hermitian matrices , 1998 .

[87]  A. Barvinok,et al.  An Algorithmic Theory of Lattice Points in Polyhedra , 1999 .

[88]  Charles H. Bennett,et al.  Exact and asymptotic measures of multipartite pure-state entanglement , 1999, Physical Review A.

[89]  W. Fulton Eigenvalues, invariant factors, highest weights, and Schubert calculus , 1999, math/9908012.

[90]  Michel Brion On the general faces of the moment polytope , 1999 .

[91]  M. Horodecki,et al.  Reduction criterion of separability and limits for a class of distillation protocols , 1999 .

[92]  A. Knutson The symplectic and algebraic geometry of Horn's problem , 1999, math/9911088.

[93]  Andrei Zelevinsky,et al.  Tensor product multiplicities, canonical bases and totally positive varieties , 1999, math/9912012.

[94]  M. Nielsen Conditions for a Class of Entanglement Transformations , 1998, quant-ph/9811053.

[95]  P. Olver Classical Invariant Theory , 1999 .

[96]  Jeroen van de Graaf,et al.  Cryptographic Distinguishability Measures for Quantum-Mechanical States , 1997, IEEE Trans. Inf. Theory.

[97]  T. Tao,et al.  Honeycombs and sums of Hermitian matrices , 2000, math/0009048.

[98]  H. Sommers,et al.  Induced measures in the space of mixed quantum states , 2000, quant-ph/0012101.

[99]  B. Judd,et al.  Reduced Density Matrices: Coulson's Challenge , 2000 .

[100]  P. Bertet,et al.  Step-by-step engineered multiparticle entanglement , 2000, Science.

[101]  J. Cirac,et al.  Three qubits can be entangled in two inequivalent ways , 2000, quant-ph/0005115.

[102]  M. Horodecki,et al.  Separability of n-particle mixed states: necessary and sufficient conditions in terms of linear maps , 2000, quant-ph/0006071.

[103]  R. Werner,et al.  Estimating the spectrum of a density operator , 2001, quant-ph/0102027.

[104]  Ketan Mulmuley,et al.  Geometric Complexity Theory I: An Approach to the P vs. NP and Related Problems , 2002, SIAM J. Comput..

[105]  G Weihs,et al.  Experimental demonstration of four-photon entanglement and high-fidelity teleportation. , 2001, Physical review letters.

[106]  Sufficient conditions for three-particle entanglement and their tests in recent experiments , 2001, quant-ph/0107072.

[107]  R. Cleve,et al.  Quantum fingerprinting. , 2001, Physical review letters.

[108]  H. Briegel,et al.  Persistent entanglement in arrays of interacting particles. , 2000, Physical review letters.

[109]  A. J. Coleman Reduced density matrices—Then and now* , 2001 .

[110]  T. Tao,et al.  The honeycomb model of _{}(ℂ) tensor products II: Puzzles determine facets of the Littlewood-Richardson cone , 2001, math/0107011.

[111]  M. Ruskai Inequalities for quantum entropy: A review with conditions for equality , 2002, quant-ph/0205064.

[112]  Raymond W. Yeung,et al.  On a relation between information inequalities and group theory , 2002, IEEE Trans. Inf. Theory.

[113]  L. Freidel,et al.  Asymptotics of 6j and 10j symbols , 2002, hep-th/0209134.

[114]  John M. Lee Introduction to Smooth Manifolds , 2002 .

[115]  Alexander Klyachko Coherent states, entanglement, and geometric invariant theory , 2002 .

[116]  C. M. Steele,et al.  Asymptotics of relativistic spin networks , 2002, gr-qc/0209023.

[117]  M. Franz Moment Polytopes of Projective G-Varieties and Tensor Products of Symmetric Group Representations , 2002 .

[118]  B. Moor,et al.  Four qubits can be entangled in nine different ways , 2001, quant-ph/0109033.

[119]  D. Meyer,et al.  Global entanglement in multiparticle systems , 2001, quant-ph/0108104.

[120]  Masahito Hayashi,et al.  Quantum universal variable-length source coding , 2002, quant-ph/0202001.

[121]  Etienne Rassart,et al.  A vector partition function for the multiplicities of sl_k(C) , 2003, math/0307227.

[122]  G. Vidal Efficient classical simulation of slightly entangled quantum computations. , 2003, Physical review letters.

[123]  A. Miyake Classification of multipartite entangled states by multidimensional determinants , 2002, quant-ph/0206111.

[124]  Gavin K. Brennen An observable measure of entanglement for pure states of multi-qubit systems , 2003, Quantum Inf. Comput..

[125]  B. Moor,et al.  Normal forms and entanglement measures for multipartite quantum states , 2001, quant-ph/0105090.

[126]  I. Dolgachev,et al.  Lectures on Invariant Theory , 2003 .

[127]  Nicholas Pippenger,et al.  The inequalities of quantum information theory , 2003, IEEE Trans. Inf. Theory.

[128]  A complete set of covariants of the four qubit system , 2003, quant-ph/0304026.

[129]  T. H. Chan,et al.  Balanced information inequalities , 2003, IEEE Trans. Inf. Theory.

[130]  A. Sudbery,et al.  One-qubit reduced states of a pure many-qubit state: polygon inequalities. , 2002, Physical review letters.

[131]  Lorenza Viola,et al.  A subsystem-independent generalization of entanglement. , 2004, Physical review letters.

[132]  E. Lerman Gradient flow of the norm squared of a moment map , 2004, math/0410568.

[133]  Sergey Bravyi Requirements for copatibility between local and multipartite quantum states , 2004, Quantum Inf. Comput..

[134]  M. S. Leifer,et al.  Measuring polynomial invariants of multiparty quantum states , 2003, quant-ph/0308008.

[135]  Guang-Can Guo,et al.  Compatible conditions, entanglement, and invariants , 2004 .

[136]  A. Winter,et al.  Randomizing Quantum States: Constructions and Applications , 2003, quant-ph/0307104.

[137]  A. Klyachko QUANTUM MARGINAL PROBLEM AND REPRESENTATIONS OF THE SYMMETRIC GROUP , 2004, quant-ph/0409113.

[138]  S. Lloyd,et al.  Quantum-Enhanced Measurements: Beating the Standard Quantum Limit , 2004, Science.

[139]  Localization for the norm-square of the moment map and the two-dimensional Yang-Mills integral , 2004, math/0404413.

[140]  D. Leibfried,et al.  Toward Heisenberg-Limited Spectroscopy with Multiparticle Entangled States , 2004, Science.

[141]  Renato Renner,et al.  Security of quantum key distribution , 2005, Ausgezeichnete Informatikdissertationen.

[142]  D. M. Appleby Symmetric informationally complete–positive operator valued measures and the extended Clifford group , 2005 .

[143]  D. Bacon,et al.  The Quantum Schur Transform: I. Efficient Qudit Circuits , 2005, quant-ph/0601001.

[144]  A. Harrow Applications of coherent classical communication and the schur transform to quantum information theory , 2005, quant-ph/0512255.

[145]  Michael A. Nielsen,et al.  A simple proof of the strong subadditivity inequality , 2005, Quantum Inf. Comput..

[146]  Hans J. Briegel,et al.  Multipartite entanglement in spin chains , 2005, quant-ph/0502160.

[147]  A. J. Short,et al.  Entanglement and the foundations of statistical mechanics , 2005 .

[148]  Xiao-Gang Wen,et al.  String-net condensation: A physical mechanism for topological phases , 2004, cond-mat/0404617.

[149]  J. Eisert,et al.  Multi-particle entanglement , 2005 .

[150]  P. Hayden,et al.  Quantum state transformations and the Schubert calculus , 2004, quant-ph/0410052.

[151]  A. Osterloh,et al.  Constructing N-qubit entanglement monotones from antilinear operators (4 pages) , 2004, quant-ph/0410102.

[152]  Matthias Christandl,et al.  On Nonzero Kronecker Coefficients and their Consequences for Spectra , 2005 .

[153]  Charles Cochet Vector partition function and representation theory , 2005 .

[154]  Victor Guillemin,et al.  Convexity properties of Hamiltonian group actions , 2005 .

[155]  A. Winter,et al.  A New Inequality for the von Neumann Entropy , 2004, quant-ph/0406162.

[156]  Andrew J. Sommese,et al.  The numerical solution of systems of polynomials - arising in engineering and science , 2005 .

[157]  F. Verstraete,et al.  Matrix product states represent ground states faithfully , 2005, cond-mat/0505140.

[158]  A. Osterloh,et al.  ENTANGLEMENT MONOTONES AND MAXIMALLY ENTANGLED STATES IN MULTIPARTITE QUBIT SYSTEMS , 2005, quant-ph/0506073.

[159]  D. Bacon,et al.  Efficient quantum circuits for Schur and Clebsch-Gordan transforms. , 2004, Physical review letters.

[160]  Matthias Christandl,et al.  The Spectra of Quantum States and the Kronecker Coefficients of the Symmetric Group , 2006 .

[161]  Charles Cochet,et al.  Volume Computation for Polytopes and Partition Functions for Classical Root Systems , 2006, Discret. Comput. Geom..

[162]  Claudio Procesi,et al.  Lie Groups: An Approach through Invariants and Representations , 2006 .

[163]  D. Gross Hudson's theorem for finite-dimensional quantum systems , 2006, quant-ph/0602001.

[164]  Finite Phase Space Methods in Quantum Information , 2006 .

[165]  Yi-Kai Liu Consistency of Local Density Matrices Is QMA-Complete , 2006, APPROX-RANDOM.

[166]  Vincent Loechner,et al.  Counting Integer Points in Parametric Polytopes Using Barvinok's Rational Functions , 2007, Algorithmica.

[167]  Hariharan Narayanan On the complexity of computing Kostka numbers and Littlewood-Richardson coefficients , 2006 .

[168]  A. Winter,et al.  Aspects of Generic Entanglement , 2004, quant-ph/0407049.

[169]  M. Ruskai Another Short and Elementary Proof of Strong Subadditivity of Quantum Entropy , 2006, quant-ph/0604206.

[170]  Jesús A. De Loera,et al.  On the Computation of Clebsch–Gordan Coefficients and the Dilation Effect , 2006, Exp. Math..

[171]  A. Klyachko Quantum marginal problem and N-representability , 2005, quant-ph/0511102.

[172]  Oleg Chterental,et al.  Normal Forms and Tensor Ranks of Pure States of Four Qubits , 2006 .

[173]  S. Lloyd Excuse our ignorance , 2006 .

[174]  Koenraad M.R. Audenaert,et al.  Subadditivity of q-entropies for q>1 , 2007, 0705.1276.

[175]  Mary Beth Ruskai,et al.  Connecting N-representability to Weyl's problem: the one-particle density matrix for N = 3 and R = 6 , 2007, 0706.1855.

[176]  Ketan Mulmuley,et al.  Geometric Complexity Theory VI: the flip via saturated and positive integer programming in representation theory and algebraic geometry , 2007, ArXiv.

[177]  P. Hayden,et al.  Black holes as mirrors: Quantum information in random subsystems , 2007, 0708.4025.

[178]  Hua Li,et al.  On Connections between Group Homomorphisms and the Ingleton Inequality , 2007, 2007 IEEE International Symposium on Information Theory.

[179]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[180]  Bernd Sturmfels,et al.  Hyperdeterminantal relations among symmetric principal minors , 2006, math/0604374.

[181]  F. Kirwan,et al.  Towards non-reductive geometric invariant theory , 2007, math/0703131.

[182]  Matthias Christandl,et al.  One-and-a-Half Quantum de Finetti Theorems , 2007 .

[183]  Nicolas Ressayre,et al.  Geometric invariant theory and the generalized eigenvalue problem , 2007, 0704.2127.

[184]  David Gross,et al.  Non-negative Wigner functions in prime dimensions , 2007 .

[185]  Matthias Christandl,et al.  Quantum computational complexity of the N-representability problem: QMA complete. , 2007, Physical review letters.

[186]  Frantisek Matús,et al.  Infinitely Many Information Inequalities , 2007, 2007 IEEE International Symposium on Information Theory.

[187]  A. Klyachko,et al.  The Pauli Principle Revisited , 2008, 0802.0918.

[188]  Masahito Hayashi,et al.  Universal Approximation of Multi-copy States and Universal Quantum Lossless Data Compression , 2008, 0806.1091.

[189]  Ketan Mulmuley,et al.  Geometric Complexity Theory II: Towards Explicit Obstructions for Embeddings among Class Varieties , 2006, SIAM J. Comput..

[190]  Ben Ibinson Quantum information and entropy , 2008 .

[191]  Jens Eisert,et al.  Quantum margulis expanders , 2007, Quantum Inf. Comput..

[192]  Ana Cannas da Silva,et al.  Lectures on Symplectic Geometry , 2008 .

[193]  S. Boixo,et al.  Operational interpretation for global multipartite entanglement. , 2007, Physical review letters.

[194]  G. Tóth,et al.  Entanglement detection , 2008, 0811.2803.

[195]  Peter Bürgisser,et al.  The complexity of computing Kronecker coefficients , 2008 .

[196]  J. Luque,et al.  Invariants des hypermatrices , 2008 .

[197]  A. Osterloh Classification of qubit entanglement: SL(2,ℂ) versus SU(2) invariance , 2008, 0809.2055.

[198]  Paradan's wall crossing formula for partition functions and Khovanski-Pukhlikov differential operator , 2008, 0803.2810.

[199]  R. Gurău,et al.  The Ponzano–Regge Asymptotic of the 6j Symbol: An Elementary Proof , 2008, 0808.3533.

[200]  Stephen P. Jordan,et al.  Fast quantum algorithms for approximating some irreducible representations of groups , 2008, 0811.0562.

[201]  Thomas Bliem On weight multiplicities of complex simple Lie algebras , 2008 .

[202]  M. Altunbulak,et al.  THE PAULI PRINCIPLE, REPRESENTATION THEORY, AND GEOMETRY OF FLAG VARIETIES , 2008 .

[203]  A. Klyachko Dynamic symmetry approach to entanglement , 2008, 0802.4008.

[204]  A. Knutson SCHUBERT CALCULUS AND QUANTUM INFORMATION , 2009 .

[205]  Chennat Gopalakrishnan On Entropy , 2009 .

[206]  G. James,et al.  The Representation Theory of the Symmetric Group , 2009 .

[207]  A. Klyachko The Pauli exclusion principle and beyond , 2009, 0904.2009.

[208]  Matthias Christandl,et al.  Postselection technique for quantum channels with applications to quantum cryptography. , 2008, Physical review letters.

[209]  L. Lamata,et al.  Operational families of entanglement classes for symmetric N-qubit States. , 2009, Physical review letters.

[210]  E. Effros A matrix convexity approach to some celebrated quantum inequalities , 2008, Proceedings of the National Academy of Sciences.

[211]  On polynomial invariants of several qubits , 2008, 0804.1661.

[212]  Velleda Baldoni,et al.  Discrete series representations and K mulltiplicities for U(p,q): user's guide , 2010 .

[213]  R. Renner,et al.  The uncertainty principle in the presence of quantum memory , 2009, 0909.0950.

[214]  P. Selinger A Survey of Graphical Languages for Monoidal Categories , 2009, 0908.3347.

[215]  M. Brion Introduction to actions of algebraic groups , 2010 .

[216]  B. Coecke Quantum picturalism , 2009, 0908.1787.

[217]  Thomas Bliem,et al.  Chopped and sliced cones and representations of Kac–Moody algebras , 2009, 0902.1810.

[218]  Marcus Huber,et al.  Detection of high-dimensional genuine multipartite entanglement of mixed states. , 2009, Physical review letters.

[219]  Renato Renner,et al.  Simplifying information-theoretic arguments by post-selection , 2010, Quantum Cryptography and Computing.

[220]  Matthias Christandl,et al.  Highly entangled states with almost no secrecy. , 2010, Physical review letters.

[221]  M. Vergne,et al.  Hamiltonian manifolds and moment map , 2011 .

[222]  Matthias Christandl,et al.  Nonvanishing of Kronecker coefficients for rectangular shapes , 2009, 0910.4512.

[223]  N. Wallach,et al.  Necessary and sufficient conditions for local manipulation of multipartite pure quantum states , 2011, 1103.5096.

[224]  Guillaume Aubrun,et al.  Entanglement Thresholds for Random Induced States , 2011, 1106.2264.

[225]  V. Vedral,et al.  Unifying Typical Entanglement and Coin Tossing: on Randomization in Probabilistic Theories , 2011, 1107.6029.

[226]  J. M. Landsberg,et al.  An Overview of Mathematical Issues Arising in the Geometric Complexity Theory Approach to VP≠VNP , 2009, SIAM J. Comput..

[227]  T. Monz,et al.  14-Qubit entanglement: creation and coherence. , 2010, Physical review letters.

[228]  J. Siewert,et al.  Polynomial invariants for discrimination and classification of four-qubit entanglement , 2011, 1101.5558.

[229]  Peter Bürgisser,et al.  Geometric complexity theory and tensor rank , 2010, STOC '11.

[230]  N. Ressayre Geometric Invariant Theory and Generalized Eigenvalue Problem II , 2011 .

[231]  Vincenzo Aquilanti,et al.  Semiclassical mechanics of the Wigner 6j-symbol , 2010, 1009.2811.

[232]  J. Emerson,et al.  Corrigendum: Negative quasi-probability as a resource for quantum computation , 2012, 1201.1256.

[233]  Laura Mančinska,et al.  Everything You Always Wanted to Know About LOCC (But Were Afraid to Ask) , 2012, 1210.4583.

[234]  A. Osterloh,et al.  Multipartite-entanglement monotones and polynomial invariants , 2011, 1105.1556.

[235]  Ion Nechita,et al.  The absolute positive partial transpose property for random induced states , 2011, 1108.1935.

[236]  Michael Walter,et al.  Computing Multiplicities of Lie Group Representations , 2012, 2012 IEEE 53rd Annual Symposium on Foundations of Computer Science.

[237]  K. Mulmuley,et al.  Geometric complexity theory III: on deciding nonvanishing of a Littlewood–Richardson coefficient , 2012 .

[238]  Jesús A. De Loera,et al.  Software for exact integration of polynomials over polyhedra , 2012, ACCA.

[239]  Andreas J. Winter,et al.  Infinitely Many Constrained Inequalities for the von Neumann Entropy , 2011, IEEE Transactions on Information Theory.

[240]  J Eisert,et al.  Positive Wigner functions render classical simulation of quantum computation efficient. , 2012, Physical review letters.

[241]  Nathan Wiebe,et al.  Efficient simulation scheme for a class of quantum optics experiments with non-negative Wigner representation , 2012, 1210.1783.

[242]  Phase transitions for random states and a semicircle law for the partial transpose , 2011, 1112.4582.

[243]  M. Kus,et al.  Critical sets of the total variance can detect all stochastic local operations and classical communication classes of multiparticle entanglement , 2012 .

[244]  A. Serafini,et al.  Measuring Gaussian quantum information and correlations using the Rényi entropy of order 2. , 2012, Physical review letters.

[245]  Michael Walter,et al.  Stabilizer information inequalities from phase space distributions , 2013, ArXiv.

[246]  Alexander A. Klyachko,et al.  The Pauli principle and magnetism , 2013, 1311.5999.

[247]  Yunshu Liu Non-Shannon Information Inequalities in Four Random Variables , 2013 .

[248]  Marcus Huber,et al.  Structure of multidimensional entanglement in multipartite systems. , 2012, Physical review letters.

[249]  Florian Mintert,et al.  Hierarchies of multipartite entanglement. , 2013, Physical review letters.

[250]  Matthias Christandl,et al.  Pinning of fermionic occupation numbers. , 2012, Physical review letters.

[251]  Frantisek Matús,et al.  The Quantum Entropy Cone of Stabiliser States , 2013, TQC.

[252]  J. Niel de Beaudrap,et al.  A linearized stabilizer formalism for systems of finite dimension , 2011, Quantum Inf. Comput..

[253]  Matthias Christandl,et al.  Entanglement Polytopes: Multiparticle Entanglement from Single-Particle Information , 2012, Science.

[254]  Marcus Huber,et al.  Entropy vector formalism and the structure of multidimensional entanglement in multipartite systems , 2013, 1307.3541.

[255]  Andreas J. Winter,et al.  The structure of Rényi entropic inequalities , 2012, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[256]  M. Walter,et al.  When is a pure state of three qubits determined by its single-particle reduced density matrices? , 2012, 1207.3849.

[257]  Misha Gromov,et al.  In a Search for a Structure, Part 1: On Entropy , 2013 .

[258]  C. L. Benavides-Riveros,et al.  Quasipinning and entanglement in the lithium isoelectronic series , 2013, 1306.6528.

[259]  A. Borodin,et al.  Integrable probability: From representation theory to Macdonald processes , 2013, 1310.8007.

[260]  Michal Oszmaniec,et al.  Convexity of momentum map, Morse index, and quantum entanglement , 2014 .

[261]  Gábor Székelyhidi Moment maps and geometric invariant theory , 2014 .

[262]  Shrawan Kumar,et al.  A study of the representations supported by the orbit closure of the determinant , 2011, Compositio Mathematica.

[263]  Matthias Christandl,et al.  Eigenvalue Distributions of Reduced Density Matrices , 2012, 1204.0741.

[264]  R. Konig,et al.  The Entropy Power Inequality for Quantum Systems , 2012, IEEE Transactions on Information Theory.

[265]  Joseph M. Renes,et al.  Lower Bounds for Quantum Parameter Estimation , 2013, IEEE Transactions on Information Theory.

[266]  Richard Kueng,et al.  Qubit stabilizer states are complex projective 3-designs , 2015, ArXiv.

[267]  Greta Panova,et al.  On the complexity of computing Kronecker coefficients , 2014, computational complexity.

[268]  Hua Sun,et al.  Index Coding Capacity: How Far Can One Go With Only Shannon Inequalities? , 2013, IEEE Transactions on Information Theory.

[269]  Victor Veitch,et al.  Contextuality Supplies the Magic for Quantum Computation , 2015, 2015 IEEE International Symposium on Multiple-Valued Logic.

[270]  Joel W. Robbin,et al.  The Moment-Weight Inequality and the Hilbert–Mumford Criterion , 2013, Lecture Notes in Mathematics.