New Challenges in Gene Expression Data Analysis and the Extended GEPAS
暂无分享,去创建一个
Joaquín Dopazo | Ramón Díaz-Uriarte | Javier Herrero | Fátima Al-Shahrour | Juan M. Vaquerizas | Lucía Conde | Álvaro Mateos | Javier Santoyo | J. Vaquerizas | J. Dopazo | Javier Herrero | F. Al-Shahrour | Á. Mateos | R. Díaz-Uriarte | J. Santoyo | L. Conde
[1] Joaquín Dopazo,et al. Combining hierarchical clustering and self-organizing maps for exploratory analysis of gene expression patterns. , 2002, Journal of proteome research.
[2] Eytan Domany,et al. Coupled Two-way Clustering Server , 2003, Bioinform..
[3] Teuvo Kohonen,et al. Self-Organizing Maps , 2010 .
[4] M. Ashburner,et al. Gene Ontology: tool for the unification of biology , 2000, Nature Genetics.
[5] Y. Benjamini,et al. Controlling the false discovery rate: a practical and powerful approach to multiple testing , 1995 .
[6] Stefano Toppo,et al. Pattern recognition in gene expression profiling using DNA array: a comparative study of different statistical methods applied to cancer classification. , 2003, Human molecular genetics.
[7] Steven C. Lawlor,et al. MAPPFinder: using Gene Ontology and GenMAPP to create a global gene-expression profile from microarray data , 2003, Genome Biology.
[8] William Stafford Noble,et al. Exploring Gene Expression Data with Class Scores , 2001, Pacific Symposium on Biocomputing.
[9] P. Khatri,et al. Profiling gene expression using onto-express. , 2002, Genomics.
[10] Geoffrey J McLachlan,et al. Selection bias in gene extraction on the basis of microarray gene-expression data , 2002, Proceedings of the National Academy of Sciences of the United States of America.
[11] Vladimir Vapnik,et al. Statistical learning theory , 1998 .
[12] C. Blaschke,et al. Expression profiles and biological function. , 2000, Genome informatics. Workshop on Genome Informatics.
[13] Yudong D. He,et al. Gene expression profiling predicts clinical outcome of breast cancer , 2002, Nature.
[14] Alfonso Valencia,et al. Information extraction in molecular biology , 2002, Briefings Bioinform..
[15] D. Botstein,et al. Cluster analysis and display of genome-wide expression patterns. , 1998, Proceedings of the National Academy of Sciences of the United States of America.
[16] D Haussler,et al. Knowledge-based analysis of microarray gene expression data by using support vector machines. , 2000, Proceedings of the National Academy of Sciences of the United States of America.
[17] Rupert G. Miller,et al. Survival Analysis , 2022, The SAGE Encyclopedia of Research Design.
[18] Daniel Pinkel,et al. Genomic microarrays in human genetic disease and cancer. , 2003, Human molecular genetics.
[19] Yogendra P. Chaubey. Resampling-Based Multiple Testing: Examples and Methods for p-Value Adjustment , 1993 .
[20] S. Dudoit,et al. Comparison of Discrimination Methods for the Classification of Tumors Using Gene Expression Data , 2002 .
[21] J. Dopazo,et al. Phylogenetic Reconstruction Using an Unsupervised Growing Neural Network That Adopts the Topology of a Phylogenetic Tree , 1997, Journal of Molecular Evolution.
[22] M. Radmacher,et al. Pitfalls in the use of DNA microarray data for diagnostic and prognostic classification. , 2003, Journal of the National Cancer Institute.
[23] Ash A. Alizadeh,et al. Genome-wide analysis of DNA copy-number changes using cDNA microarrays , 1999, Nature Genetics.
[24] M. Pagano,et al. Survival analysis. , 1996, Nutrition.
[25] S. Dudoit,et al. Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation. , 2002, Nucleic acids research.
[26] Fatima Al-Shahrour,et al. The Use of Go Terms to Understand the Biological Significance of Microarray Differential Gene Expression Data , 2004 .
[27] P. Sneath,et al. Numerical Taxonomy , 1962, Nature.
[28] Joaquín Dopazo,et al. FatiGO: a web tool for finding significant associations of Gene Ontology terms with groups of genes , 2004, Bioinform..
[29] Alex Bateman,et al. The InterPro Database, 2003 brings increased coverage and new features , 2003, Nucleic Acids Res..
[30] Susumu Goto,et al. The KEGG resource for deciphering the genome , 2004, Nucleic Acids Res..
[31] Joaquín Dopazo,et al. GEPAS: a web-based resource for microarray gene expression data analysis , 2003, Nucleic Acids Res..
[32] Willem A Rensink,et al. Statistical issues in microarray data analysis. , 2006, Methods in molecular biology.
[33] A. Brazma,et al. Gene expression data analysis. , 2001, FEBS letters.
[34] Ajay N. Jain,et al. Assembly of microarrays for genome-wide measurement of DNA copy number , 2001, Nature Genetics.
[35] Joaquín Dopazo,et al. Gene expression data preprocessing , 2003, Bioinform..
[36] R. Altman,et al. Using text analysis to identify functionally coherent gene groups. , 2002, Genome research.
[37] Nello Cristianini,et al. Support vector machine classification and validation of cancer tissue samples using microarray expression data , 2000, Bioinform..
[38] D. Lockhart,et al. Expression monitoring by hybridization to high-density oligonucleotide arrays , 1996, Nature Biotechnology.
[39] Joaquín Dopazo,et al. Using gene ontology on genome-scale studies to find significant associations of biologically relevant terms to groups of genes , 2003, 2003 IEEE XIII Workshop on Neural Networks for Signal Processing (IEEE Cat. No.03TH8718).
[40] Michael Gribskov,et al. Use of keyword hierarchies to interpret gene expression patterns , 2001, Bioinform..
[41] Y. Benjamini,et al. THE CONTROL OF THE FALSE DISCOVERY RATE IN MULTIPLE TESTING UNDER DEPENDENCY , 2001 .
[42] P. Brown,et al. Parallel human genome analysis: microarray-based expression monitoring of 1000 genes. , 1996, Proceedings of the National Academy of Sciences of the United States of America.
[43] David E. Misek,et al. Gene-expression profiles predict survival of patients with lung adenocarcinoma , 2002, Nature Medicine.
[44] D. Slonim. From patterns to pathways: gene expression data analysis comes of age , 2002, Nature Genetics.