A methodology for the formulation of error estimators for time integration in linear solid and structural dynamics

In this article, we present a novel methodology for the formulation of a posteriori error estimators applicable to time-stepping algorithms of the type commonly employed in solid and structural mechanics. The estimators constructed with the presented methodology are accurate and can be implemented very efficiently. More importantly, they provide reliable error estimations even in non-smooth problems where many standard estimators fail to capture the order of magnitude of the error. The proposed methodology is applied, as an illustrative example, to construct an error estimator for the Newmark method. Numerical examples of its performance and comparison with existing error estimators are presented. These examples verify the good accuracy and robustness predicted by the analysis. Copyright © 2005 John Wiley & Sons, Ltd.

[1]  Ignacio Romero,et al.  Stability analysis of linear multistep methods for classical elastodynamics , 2004 .

[2]  Nils-Erik Wiberg,et al.  A Post-Processing Technique and an a Posteriori Error Estimate for the Newmark Method in Dynamic Analysis , 1993 .

[3]  T. J.R. Hughes,et al.  ANALYSIS OF TRANSIENT ALGORITHMS WITH PARTICULAR REFERENCE TO STABILITY BEHAVIOR. , 1983 .

[4]  Claes Johnson,et al.  Discontinuous Galerkin finite element methods for second order hyperbolic problems , 1993 .

[5]  Edward L. Wilson,et al.  A COMPUTER PROGRAM FOR THE DYNAMIC STRESS ANALYSIS OF UNDERGROUND STRUCTURES , 1968 .

[6]  Ernst Hairer,et al.  Solving Ordinary Differential Equations I: Nonstiff Problems , 2009 .

[7]  Jintai Chung,et al.  A Time Integration Algorithm for Structural Dynamics With Improved Numerical Dissipation: The Generalized-α Method , 1993 .

[8]  T. Laursen Computational Contact and Impact Mechanics , 2003 .

[9]  I. Romero On the stability and convergence of fully discrete solutions in linear elastodynamics , 2002 .

[10]  Jintai Chung,et al.  A priori error estimator of the generalized‐α method for structural dynamics , 2003 .

[11]  Thomas J. R. Hughes,et al.  Improved numerical dissipation for time integration algorithms in structural dynamics , 1977 .

[12]  M. Géradin,et al.  Flexible Multibody Dynamics: A Finite Element Approach , 2001 .

[13]  Yi Min Xie,et al.  A simple error estimator and adaptive time stepping procedure for dynamic analysis , 1991 .

[14]  Kumar K. Tamma,et al.  Design, analysis, and synthesis of generalized single step single solve and optimal algorithms for structural dynamics , 2004 .

[15]  P. G. Bergan,et al.  An automatic time-stepping algorithm for dynamic problems , 1985 .

[16]  E. Hairer,et al.  Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems , 2010 .

[17]  John C. Houbolt,et al.  A Recurrence Matrix Solution for the Dynamic Response of Elastic Aircraft , 1950 .

[18]  W. L. Wood,et al.  A unified set of single step algorithms. Part 1: General formulation and applications , 1984 .

[19]  Gregory M. Hulbert,et al.  Automatic time step control algorithm for structural dynamics , 1995 .

[20]  Ekkehard Ramm,et al.  Local and global error estimations in linear structural dynamics , 2000 .

[21]  Carlos A. Felippa,et al.  DIRECT TIME INTEGRATION METHODS IN NONLINEAR STRUCTURAL DYNAMICS , 1979 .

[22]  Chang-Koon Choi,et al.  Error estimates and adaptive time stepping for various direct time integration methods , 1996 .

[23]  Nils-Erik Wiberg,et al.  A Posteriori Local Error Estimation and Adaptive Time-stepping for Newmark Integration in Dynamic Analysis , 1992 .

[24]  K. C. Park,et al.  A variable-step central difference method for structural dynamics analysis — part 1. Theoretical aspects , 1980 .

[25]  James H. Bramble,et al.  Semidiscrete and single step fully discrete approximations for second order hyperbolic equations , 1979 .

[26]  K. C. Park,et al.  A variable-step central difference method for structural dynamics analysis- part 2. Implementation and performance evaluation , 1980 .

[27]  Nathan M. Newmark,et al.  A Method of Computation for Structural Dynamics , 1959 .