Learning time-dependent noise to reduce logical errors: real time error rate estimation in quantum error correction

Quantum error correction is important to quantum information processing, which allows us to reliably process information encoded in quantum error correction codes. Efficient quantum error correction benefits from the knowledge of error rates. We propose a protocol for monitoring error rates in real time without interrupting the quantum error correction. Any adaptation of the quantum error correction code or its implementation circuit is not required. The protocol can be directly applied to the most advanced quantum error correction techniques, e.g. surface code. A Gaussian processes algorithm is used to estimate and predict error rates based on error correction data in the past. We find that using these estimated error rates, the probability of error correction failures can be significantly reduced by a factor increasing with the code distance.

[1]  John Clarke,et al.  Suppressing relaxation in superconducting qubits by quasiparticle pumping , 2016, Science.

[2]  John M. Martinis,et al.  Scalable in situ qubit calibration during repetitive error detection , 2016, 1603.03082.

[3]  T. M. Stace,et al.  Error Correction and Degeneracy in Surface Codes Suffering Loss , 2009, 0912.1159.

[4]  J. Preskill,et al.  Topological quantum memory , 2001, quant-ph/0110143.

[5]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[6]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[7]  K. Saeedi,et al.  Room-Temperature Quantum Bit Storage Exceeding 39 Minutes Using Ionized Donors in Silicon-28 , 2013, Science.

[8]  Lehel Csató,et al.  Sparse On-Line Gaussian Processes , 2002, Neural Computation.

[9]  Martin Suchara,et al.  Efficient Algorithms for Maximum Likelihood Decoding in the Surface Code , 2014, 1405.4883.

[10]  Ying Li,et al.  A magic state’s fidelity can be superior to the operations that created it , 2014, New Journal of Physics.

[11]  A. Kitaev,et al.  Universal quantum computation with ideal Clifford gates and noisy ancillas (14 pages) , 2004, quant-ph/0403025.

[12]  Steane,et al.  Error Correcting Codes in Quantum Theory. , 1996, Physical review letters.

[13]  Emanuel Knill,et al.  High Fidelity Universal Gate Set for 9Be+ Ion Qubits | NIST , 2016 .

[14]  David Poulin,et al.  Fast decoders for topological quantum codes. , 2009, Physical review letters.

[15]  Austin G. Fowler,et al.  Scalable extraction of error models from the output of error detection circuits , 2014, 1405.1454.

[16]  A. Rivas,et al.  Iterative Phase Optimization of Elementary Quantum Error Correcting Codes (Open Access, Publisher's Version) , 2016 .

[17]  David Poulin,et al.  Fault-tolerant renormalization group decoder for abelian topological codes , 2013, Quantum Inf. Comput..

[18]  R. Schoelkopf,et al.  Superconducting Circuits for Quantum Information: An Outlook , 2013, Science.

[19]  M. Mohseni,et al.  Direct characterization of quantum dynamics: General theory , 2006, quant-ph/0601034.

[20]  M. Mariantoni,et al.  Surface codes: Towards practical large-scale quantum computation , 2012, 1208.0928.

[21]  David Poulin,et al.  A renormalization group decoding algorithm for topological quantum codes , 2010, 2010 IEEE Information Theory Workshop.

[22]  Vladimir Kolmogorov,et al.  Blossom V: a new implementation of a minimum cost perfect matching algorithm , 2009, Math. Program. Comput..

[23]  David Poulin Optimal and efficient decoding of concatenated quantum block codes , 2006 .

[24]  H. Bombin,et al.  Topological quantum distillation. , 2006, Physical review letters.

[25]  Christopher Granade,et al.  Practical Bayesian tomography , 2015, 1509.03770.

[26]  F. Schmidt-Kaler,et al.  Assessing the progress of trapped-ion processors towards fault-tolerant quantum computation , 2017, 1705.02771.

[27]  E. Knill,et al.  Randomized Benchmarking of Quantum Gates , 2007, 0707.0963.

[28]  Carlton M. Caves,et al.  In-situ characterization of quantum devices with error correction , 2014, 1405.5656.

[29]  Yuichiro Fujiwara,et al.  Instantaneous Quantum Channel Estimation during Quantum Information Processing , 2014, ArXiv.

[30]  Earl T. Campbell,et al.  Quantum computation with realistic magic-state factories , 2016, 1605.07197.

[31]  M. Opper Sparse Online Gaussian Processes , 2008 .

[32]  N. Linke,et al.  High-Fidelity Quantum Logic Gates Using Trapped-Ion Hyperfine Qubits. , 2015, Physical review letters.