Computing All Elliptic Curves Over an Arbitrary Number Field with Prescribed Primes of Bad Reduction

ABSTRACT In this article, we study the problem of how to determine all elliptic curves defined over an arbitrary number field K with good reduction outside a given finite set of primes S of K by solving S-unit equations. We give examples of elliptic curves over and quadratic fields.

[1]  J. Cremona Algorithms for Modular Elliptic Curves , 1992 .

[2]  K. Wildanger Über das Lösen von Einheiten- und Indexformgleichungen in algebraischen Zahlkörpern , 2000 .

[3]  Michael Laska Elliptic curves over number fields with prescribed reduction type , 1983 .

[4]  Henri Cohen,et al.  Advanced topics in computational number theory , 2000 .

[5]  Nigel P. Smart The Algorithmic Resolution of Diophantine Equations: Frontmatter , 1998 .

[6]  G. Ballew,et al.  The Arithmetic of Elliptic Curves , 2020, Elliptic Curves.

[7]  B. Matschke,et al.  Solving 𝑆-unit, Mordell, Thue, Thue–Mahler and Generalized Ramanujan–Nagell Equations via the Shimura–Taniyama Conjecture , 2016, Memoirs of the American Mathematical Society.

[8]  N. Smart The solution of triangularly connected decomposable form equations , 1995 .

[9]  Henri Cohen,et al.  A course in computational algebraic number theory , 1993, Graduate texts in mathematics.

[10]  M. Bennett,et al.  Computing Elliptic Curves over \(\mathbb{Q}\): Bad Reduction at One Prime , 2017 .

[12]  K. Ribet A modular construction of unramifiedp-extensions ofQ(μp) , 1976 .

[13]  B. D. Weger,et al.  Algorithms for diophantine equations , 1989 .

[14]  N. Smart The Algorithmic Resolution of Diophantine Equations: S -unit equations , 1998 .

[15]  John Cremona,et al.  Finding All Elliptic Curves with Good Reduction Outside a Given Set of Primes , 2007, Exp. Math..

[16]  U. Fincke,et al.  Improved methods for calculating vectors of short length in a lattice , 1985 .

[17]  Masanari Kida Good reduction of elliptic curves over imaginary quadratic fields , 2001 .

[18]  De Weger,et al.  de Weger: On the practical solution of the Thue equation , 1989 .

[19]  De Weger,et al.  Solving a specific Thue-Mahler equation , 1991 .

[20]  De Weger Solving exponential diophantine equations using lattice basis reduction algorithms , 1987 .

[21]  Nigel P. Smart Determining the small solutions to S-unit equations , 1999, Math. Comput..

[22]  N. Smart The Algorithmic Resolution of Diophantine Equations: Integral and rational points on curves , 1998 .

[23]  De Weger,et al.  Corrections to "How to explicitly solve a Thue-Mahler equation'' , 1993 .

[24]  John Cremona,et al.  The L-Functions and Modular Forms Database Project , 2015, Foundations of Computational Mathematics.

[25]  K. Ribet A Modular Construction of Unramified p-Extensions of Q , 2003 .