Pseudo-Isotopic Substituted (Co0.5ni0.5)S2 Anchoring on V4c3tx Mxene as an Efficient Anode for Full Sodium-Ions Batteries

[1]  Lili Wang,et al.  Dual sensing signal decoupling based on tellurium anisotropy for VR interaction and neuro-reflex system application , 2022, Nature Communications.

[2]  Shengjie Peng,et al.  Rapid complete reconfiguration induced actual active species for industrial hydrogen evolution reaction , 2022, Nature Communications.

[3]  G. Sharma,et al.  Organic bulk heterojunction enabled with nanocapsules of hydrate vanadium pentaoxide layer for high responsivity self-powered photodetector , 2022, Journal of Semiconductors.

[4]  Junming Cao,et al.  TiVCTx MXene/Chalcogenide Heterostructure-Based High-Performance Magnesium-Ion Battery as Flexible Integrated Units. , 2022, Small.

[5]  S. Jun,et al.  Atomic‐Level Platinum Filling into Ni‐Vacancies of Dual‐Deficient NiO for Boosting Electrocatalytic Hydrogen Evolution , 2022, Advanced Energy Materials.

[6]  J. Qi,et al.  Corrosion behavior of stainless steel-tungsten carbide joints brazed with AgCuX (X = In, Ti) alloys , 2022, Corrosion Science.

[7]  Y. Gogotsi,et al.  MXene chemistry, electrochemistry and energy storage applications , 2022, Nature Reviews Chemistry.

[8]  Xiaolin Wei,et al.  Creating Unidirectional Fast Ion Diffusion Channels in G/NiS2 -MoS2  Heterostructures for High-Performance Sodium-Ion Batteries. , 2022, Small.

[9]  J. Ni,et al.  Structurally Durable Bimetallic Alloy Anodes Enabled by Compositional Gradients , 2022, Advanced science.

[10]  Quan-hong Yang,et al.  Roles of Metal Ions in MXene Synthesis, Processing and Applications: A Perspective , 2022, Advanced science.

[11]  G. Yin,et al.  Investigating the Origin of the Enhanced Sodium Storage Capacity of Transition Metal Sulfide Anodes in Ether‐Based Electrolytes , 2022, Advanced Functional Materials.

[12]  Heng Wang,et al.  Boosting Fast Sodium Ion Storage by Synergistic Effect of Heterointerface Engineering and Nitrogen Doping Porous Carbon Nanofibers. , 2022, Small.

[13]  Lili Wang,et al.  MXene-Bonded hollow MoS2/Carbon sphere strategy for high-performance flexible sodium ion storage , 2022, Chemical Engineering Journal.

[14]  C. Yuan,et al.  Few-layered V2C MXene derived 3D V3S4 nanocrystals functionalized carbon flakes boosting polysulfide adsorption and catalytic conversion towards Li-S batteries , 2022, Journal of Materials Chemistry A.

[15]  Tingting Gao,et al.  Bimetallic SnS2/NiS2@S-rGO nanocomposite with hierarchical flower-like architecture for superior high rate and ultra-stable half/full sodium-ion batteries , 2022 .

[16]  S. Ramakrishna,et al.  Tailoring the structure of silicon-based materials for lithium-ion batteries via electrospinning technology , 2021, eScience.

[17]  Shengjie Peng,et al.  Recent Progress of Electrospun Nanofibers for Zinc–Air Batteries , 2021, Advanced Fiber Materials.

[18]  Zhong Lin Wang,et al.  Self-charging power textiles integrating energy harvesting triboelectric nanogenerators with energy storage batteries/supercapacitors , 2021, Journal of Semiconductors.

[19]  C. Zhi,et al.  Recently advances in flexible zinc ion batteries , 2021, Journal of Semiconductors.

[20]  C. Yuan,et al.  V2CTx MXene and its derivatives: synthesis and recent progress in electrochemical energy storage applications , 2021, Rare Metals.

[21]  C. Zhi,et al.  Electrolyte/Structure-Dependent Cocktail Mediation Enabling High-Rate/Low-Plateau Metal Sulfide Anodes for Sodium Storage , 2021, Nano-Micro Letters.

[22]  G. Shen,et al.  Ti3C2Tx MXene Conductive Layers Supported Bio‐Derived Fex−1Sex/MXene/Carbonaceous Nanoribbons for High‐Performance Half/Full Sodium‐Ion and Potassium‐Ion Batteries , 2021, Advanced materials.

[23]  Chao-ying Wang,et al.  A Partial Sulfuration Strategy Derived Multi‐Yolk–Shell Structure for Ultra‐Stable K/Na/Li‐ion Storage , 2021, Advanced materials.

[24]  H. Du,et al.  Flexible MXene Framework as a Fast Electron/Potassium‐Ion Dual‐Function Conductor Boosting Stable Potassium Storage in Graphite Electrodes , 2021, Advanced Functional Materials.

[25]  X. Xia,et al.  Emerging of Heterostructure Materials in Energy Storage: A Review , 2021, Advanced materials.

[26]  Ziqi Sun,et al.  Strongly Coupled 2D Transition Metal Chalcogenide-MXene-Carbonaceous Nanoribbon Heterostructures with Ultrafast Ion Transport for Boosting Sodium/Potassium Ions Storage , 2021, Nano-Micro Letters.

[27]  Zhen-guo Wu,et al.  Hard carbon for sodium storage: mechanism and optimization strategies toward commercialization , 2021, Energy & Environmental Science.

[28]  J. Greeley,et al.  Intrinsic Electrocatalytic Activity for Oxygen Evolution of Crystalline 3d‐Transition Metal Layered Double Hydroxides , 2021, Angewandte Chemie.

[29]  Xifei Li,et al.  Nitrogen/sulphur dual-doped hierarchical carbonaceous fibers boosting potassium-ion storage , 2021 .

[30]  Lili Wang,et al.  Carbon-Reinforced Nb2CTx MXene/MoS2 Nanosheets as a Superior Rate and High-Capacity Anode for Sodium-Ion Batteries. , 2021, ACS nano.

[31]  Shengjie Peng,et al.  Interfacial Electronic Coupling of Ultrathin Transition-Metal Hydroxides Nanosheets with Layered MXene as a New Prototype for Platinum-Like Hydrogen Evolution , 2021, Energy & Environmental Science.

[32]  Shengjie Peng,et al.  In-situ formation of Co1−xS hollow polyhedrons anchored on multichannel carbon nanofibers as self-supporting anode for lithium/sodium-ion batteries , 2020 .

[33]  J. Qi,et al.  Nanoarchitectured Design of Vertical‐Standing Arrays for Supercapacitors: Progress, Challenges, and Perspectives , 2020, Advanced Functional Materials.

[34]  X. Lou,et al.  Recent Advances on Mixed Metal Sulfides for Advanced Sodium‐Ion Batteries , 2020, Advanced materials.

[35]  Huaping Zhao,et al.  Highly-rough surface carbon nanofibers film as an effective interlayer for lithium–sulfur batteries , 2020, Journal of Semiconductors.

[36]  Mao-wen Xu,et al.  MXenes for Non‐Lithium‐Ion (Na, K, Ca, Mg, and Al) Batteries and Supercapacitors , 2020, Advanced Energy Materials.

[37]  Qingshui Xie,et al.  3D uniform nitrogen-doped carbon skeleton for ultra-stable sodium metal anode , 2020, Nano Research.

[38]  Jing Xie,et al.  A retrospective on lithium-ion batteries , 2020, Nature Communications.

[39]  Lili Wang,et al.  Nanofiber/nanowires-based flexible and stretchable sensors , 2020, Journal of Semiconductors.

[40]  Ting Li,et al.  Assembled NiS nanoneedles anode for Na-ion batteries: Enhanced the performance by organic hyperbranched polymer electrode additives , 2020 .

[41]  B. Liu,et al.  One-step construction of three-dimensional nickel sulfide-embedded carbon matrix for sodium-ion batteries and hybrid capacitors , 2020, Energy Storage Materials.

[42]  Chaochao Fu,et al.  Carbon-encapsulated CoS2 nanoparticles anchored on N-doped carbon nanofibers derived from ZIF-8/ZIF-67 as anode for sodium-ion batteries , 2020 .

[43]  Xunhui Xiong,et al.  General and Scalable Fabrication of Core-Shell Metal Sulfides@C Anchored on 3D N-Doped Foam toward Flexible Sodium Ion Batteries. , 2019, Small.

[44]  Ji-cai Feng,et al.  Activating and optimizing the activity of NiCoP nanosheets for electrocatalytic alkaline water splitting through the V doping effect enhanced by P vacancies , 2019, Journal of Materials Chemistry A.

[45]  Xiaobo Ji,et al.  Hierarchical NiS2 Modified with Bifunctional Carbon for Enhanced Potassium‐Ion Storage , 2019, Advanced Functional Materials.

[46]  Yanan Huang,et al.  Synthesis and lithium ion storage performance of two-dimensional V4C3 MXene , 2019, Chemical Engineering Journal.

[47]  Zhiwei Zhang,et al.  Alkali-induced 3D crinkled porous Ti3C2 MXene architectures coupled with NiCoP bimetallic phosphide nanoparticles as anodes for high-performance sodium-ion batteries , 2019 .

[48]  Chang Ming Li,et al.   Circuit board-like CoS/MXene composite with superior performance for sodium storage , 2019, Chemical Engineering Journal.

[49]  Hui Li,et al.  Heterostructures of Ni–Co–Al layered double hydroxide assembled on V4C3MXene for high-energy hybrid supercapacitors , 2019, Journal of Materials Chemistry A.

[50]  X. Lou,et al.  A Ternary Fe1−xS@Porous Carbon Nanowires/Reduced Graphene Oxide Hybrid Film Electrode with Superior Volumetric and Gravimetric Capacities for Flexible Sodium Ion Batteries , 2019, Advanced Energy Materials.

[51]  W. Mai,et al.  Design of pomegranate-like clusters with NiS2 nanoparticles anchored on nitrogen-doped porous carbon for improved sodium ion storage performance , 2018 .

[52]  S. Dou,et al.  3D spongy CoS2 nanoparticles/carbon composite as high-performance anode material for lithium/sodium ion batteries , 2018 .

[53]  L. Mai,et al.  Mesoporous NiS2 Nanospheres Anode with Pseudocapacitance for High-Rate and Long-Life Sodium-Ion Battery. , 2017, Small.

[54]  M. Sluyters-Rehbach,et al.  The analysis of electrode impedances complicated by the presence of a constant phase element , 1984 .