åqvist's Dyadic Deontic Logic E in HOL

We devise a shallow semantical embedding of Åqvist’s dyadic deontic logic E in classical higher-order logic. This embedding is encoded in Isabelle/HOL, which turns this system into a proof assistant for deontic logic reasoning. The experiments with this environment provide evidence that this logic implementation fruitfully enables interactive and automated reasoning at the meta-level and the object-level.

[1]  Dov M. Gabbay,et al.  Handbook of deontic logic and normative systems , 2013 .

[2]  Alonzo Church,et al.  A formulation of the simple theory of types , 1940, Journal of Symbolic Logic.

[3]  Christoph Benzmüller,et al.  Higher-order semantics and extensionality , 2004, Journal of Symbolic Logic.

[4]  Roderick M. Chisholm,et al.  Contrary-To-Duty Imperatives and Deontic Logic , 1963 .

[5]  Christoph Benzmüller,et al.  Recent Successes with a Meta-Logical Approach to Universal Logical Reasoning (Extended Abstract) , 2017, SBMF.

[6]  Christian Doczkal,et al.  Completeness and Decidability Results for CTL in Constructive Type Theory , 2016, Journal of Automated Reasoning.

[7]  B. Hansson An analysis of some deontic logics , 1969 .

[8]  Christoph Benzmüller,et al.  MECHANIZING PRINCIPIA LOGICO-METAPHYSICA IN FUNCTIONAL TYPE-THEORY , 2017, The Review of Symbolic Logic.

[9]  Christoph Benzmüller,et al.  Systematic Verification of the Modal Logic Cube in Isabelle/HOL , 2015, PxTP@CADE.

[10]  Christoph Benzmüller Automating Quantified Conditional Logics in HOL , 2013, IJCAI.

[11]  Christoph Benzmüller,et al.  Church’s Type Theory , 2006 .

[12]  Lawrence Charles Paulson,et al.  Isabelle/HOL: A Proof Assistant for Higher-Order Logic , 2002 .

[13]  Leon Henkin,et al.  Completeness in the theory of types , 1950, Journal of Symbolic Logic.

[14]  Andrew J. I. Jones,et al.  Completeness and decidability results for a logic of contrary-to-duty conditionals , 2013, J. Log. Comput..

[15]  Lawrence C. Paulson,et al.  Quantified Multimodal Logics in Simple Type Theory , 2009, Logica Universalis.

[16]  Peter B. Andrews General models and extensionality , 1972, Journal of Symbolic Logic.

[17]  X. Parent Maximality vs optimality in dyadic deontic logic- Completeness results for systems in Hansson's tradition. , 2013 .

[18]  Christian Doczkal,et al.  Completeness and decidability of converse PDL in the constructive type theory of Coq , 2018, CPP.

[19]  Christoph Benzmüller,et al.  Cut-Elimination for Quantified Conditional Logic , 2017, J. Philos. Log..

[20]  Paul McNamara,et al.  Deontic logic , 2006, Logic and the Modalities in the Twentieth Century.

[21]  Tobias Nipkow,et al.  Nitpick: A Counterexample Generator for Higher-Order Logic Based on a Relational Model Finder , 2010, ITP.

[22]  Lawrence C. Paulson,et al.  The Higher-Order Prover Leo-II , 2015, Journal of Automated Reasoning.

[23]  Xavier Parent,et al.  A Dyadic Deontic Logic in HOL , 2018, DEON.

[24]  Xavier Parent,et al.  COMPLETENESS OF ÅQVIST’S SYSTEMS E AND F , 2014, The Review of Symbolic Logic.

[25]  Christoph Benzmüller,et al.  Universal (meta-)logical reasoning: Recent successes , 2019, Sci. Comput. Program..