Moment inequalities for functions of independent random variables

A general method for obtaining moment inequalities for functions of independent random variables is presented. It is a generalization of the entropy method which has been used to derive concentration inequalities for such functions [Boucheron, Lugosi and Massart Ann. Probab. 31 (2003) 1583-1614], and is based on a generalized tensorization inequality due to Latala and Oleszkiewicz [Lecture Notes in Math, 1745 (2000) 147-168]. The new inequalities prove to be a versatile tool in a wide range of applications. We illustrate the power of the method by showing how it can be used to effortlessly re-derive classical inequalities including Rosenthal and Kahane-Khinchine-type inequalities for sums of independent random variables, moment inequalities for suprema of empirical processes and moment inequalities for Rademacher chaos and U-statistics. Some of these corollaries are apparently new. In particular, we generalize Talagrand's exponential inequality for Rademacher chaos of order 2 to any order. We also discuss applications for other complex functions of independent random variables, such as suprema of Boolean polynomials which include, as special cases, subgraph counting problems in random graphs.

[1]  C. McDiarmid Concentration , 1862, The Dental register.

[2]  Michel Loève,et al.  Probability Theory I , 1977 .

[3]  A. Bonami Étude des coefficients de Fourier des fonctions de $L^p(G)$ , 1970 .

[4]  J. Hoffmann-jorgensen Probability in Banach Space , 1977 .

[5]  H. Teicher,et al.  Probability theory: Independence, interchangeability, martingales , 1978 .

[6]  B. Efron,et al.  The Jackknife Estimate of Variance , 1981 .

[7]  J. Steele An Efron-Stein inequality for nonsymmetric statistics , 1986 .

[8]  D. Burkholder Sharp inequalities for martingales and stochastic integrals , 1988 .

[9]  Colin McDiarmid,et al.  Surveys in Combinatorics, 1989: On the method of bounded differences , 1989 .

[10]  W. Beckner A generalized Poincaré inequality for Gaussian measures , 1989 .

[11]  Stephen Suen,et al.  A correlation inequality and a Poisson limit theorem for nonoverlapping balanced subgraphs of a random graph , 1990, Random Struct. Algorithms.

[12]  Svante Janson,et al.  Poisson Approximation for Large Deviations , 1990, Random Struct. Algorithms.

[13]  D. Burkholder,et al.  Explorations in martingale theory and its applications , 1991 .

[14]  S. Kwapień,et al.  Random Series and Stochastic Integrals: Single and Multiple , 1992 .

[15]  I. Pinelis OPTIMUM BOUNDS FOR THE DISTRIBUTIONS OF MARTINGALES IN BANACH SPACES , 1994, 1208.2200.

[16]  M. Talagrand Concentration of measure and isoperimetric inequalities in product spaces , 1994, math/9406212.

[17]  M. Talagrand New concentration inequalities in product spaces , 1996 .

[18]  M. Talagrand A new look at independence , 1996 .

[19]  M. Ledoux On Talagrand's deviation inequalities for product measures , 1997 .

[20]  E. Giné,et al.  Decoupling: From Dependence to Independence , 1998 .

[21]  M. Habib Probabilistic methods for algorithmic discrete mathematics , 1998 .

[22]  Vladimir Alekseevich Vatutin,et al.  Рецензия на книгу Habib М., McDiarmid С., Ramirez-Alfonsin J., Reed В. (Eds.) “Probabilistic Methods for Algorithmic Disctrete Mathematics”@@@Book review: Habib M., McDiarmid C., Ramirez-Alfonsin J., Reed B. (Eds.) “Probabilistic Methods for Algorithmic Disctrete Mathematics” , 1999 .

[23]  M. Ledoux Concentration of measure and logarithmic Sobolev inequalities , 1999 .

[24]  S. Boucheron,et al.  A sharp concentration inequality with applications , 1999, Random Struct. Algorithms.

[25]  V. Koltchinskii,et al.  Rademacher Processes and Bounding the Risk of Function Learning , 2004, math/0405338.

[26]  Svante Janson,et al.  Random graphs , 2000, ZOR Methods Model. Oper. Res..

[27]  P. Massart Some applications of concentration inequalities to statistics , 2000 .

[28]  R. Latala,et al.  Between Sobolev and Poincaré , 2000, math/0003043.

[29]  P. Massart,et al.  About the constants in Talagrand's concentration inequalities for empirical processes , 2000 .

[30]  J. Zinn,et al.  Exponential and Moment Inequalities for U-Statistics , 2000, math/0003228.

[31]  S. Boucheron,et al.  A sharp concentration inequality with applications , 1999, Random Struct. Algorithms.

[32]  Peter L. Bartlett,et al.  Rademacher and Gaussian Complexities: Risk Bounds and Structural Results , 2003, J. Mach. Learn. Res..

[33]  Vladimir Koltchinskii,et al.  Rademacher penalties and structural risk minimization , 2001, IEEE Trans. Inf. Theory.

[34]  M. Ledoux The concentration of measure phenomenon , 2001 .

[35]  E. Rio,et al.  Inégalités de concentration pour les processus empiriques de classes de parties , 2001 .

[36]  Djalil CHAFAÏ Entropies, convexity, and functional inequalities , 2002 .

[37]  P. MassartLedoux,et al.  Concentration Inequalities Using the Entropy Method , 2002 .

[38]  Djalil CHAFAÏ On Φ-entropies and Φ-Sobolev inequalities , 2002 .

[39]  O. Bousquet A Bennett concentration inequality and its application to suprema of empirical processes , 2002 .

[40]  L. Devroye Laws of large numbers and tail inequalities for random tries and PATRICIA trees , 2002 .

[41]  Peter L. Bartlett,et al.  Localized Rademacher Complexities , 2002, COLT.

[42]  Peter L. Bartlett,et al.  Model Selection and Error Estimation , 2000, Machine Learning.

[43]  Svante Janson,et al.  The Deletion Method For Upper Tail Estimates , 2004, Comb..

[44]  S. Janson,et al.  Upper tails for subgraph counts in random graphs , 2004 .

[45]  Van H. Vu,et al.  Divide and conquer martingales and the number of triangles in a random graph , 2004, Random Struct. Algorithms.

[46]  Alan M. Frieze,et al.  Random graphs , 2006, SODA '06.